916 resultados para H2O2
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon–oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
A family of copper oxide catalysts with loadings spanning 1–5 wt% were dispersed on a three dimensional, mesoporous TUD-1 silica through a hydrothermal, surfactant-free route employing tetraethylene glycol as a structure-directing agent. Their bulk and surface properties were characterized by N2 physisorption, XRD, DRUVS, EPR, TEM and Raman spectroscopy, confirming the expected mesoporous wormhole/foam support morphology and presence of well-dispersed CuO nanoparticles (∼5–20 nm). The catalytic performance of Cu/TUD-1 was evaluated as heterogeneous Fenton-like catalysts for Bisphenol A (BPA) oxidative degradation in the presence of H2O2 as a function of [H2O2], and CuO loading. Up to 90.4% of 100 ppm BPA removal was achieved over 2.5 wt% Cu/TUD-1 within 180 min, with negligible Cu leaching into the treated water.
Resumo:
LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2 in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5'-ATTGCCTGGGGTTAT-3' LysR box adjacent to the predicted -35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.
Resumo:
A estética dentária tem recebido bastante enfoque nos últimos anos, particularmente devido à importância a que a população atribui à aparência estética do sorriso. É, assim, desejado um sorriso o mais branco possível e que de preferência seja fácil de obter, eficaz, rápido, económico e que seja o menos invasivo possível. No entanto, muitos pacientes apresentam frequentemente dentes com cor alterada, comprometendo desta forma a estética do sorriso. O branqueamento dentário é uma técnica não invasiva, conservadora que não altera a forma natural do dente, e que permite alterações estéticas consideráveis. A procura de uma melhoria estética a todos os níveis, leva a que o Branqueamento dentário se apresente hoje como método de eleição para a remoção da pigmentação dentária. Recorre-se assim a substâncias oxidantes, que na maioria dos casos têm origem no Peróxido de Hidrogénio (H2O2). Um dos efeitos secundários ao Branqueamento, prende-se com a sensibilidade dentária, sendo que esta pode originar algum desconforto ou mesmo ser condicionante para a não realização ou término do tratamento. Para se atingir sucesso num tratamento branqueador é da maior importância o diagnóstico preciso da etiologia da alteração de cor, por isso uma anamnese detalhada e um exame clínico e dentário são da maior importância para se poder aconselhar o paciente pelo melhor tratamento a adotar. O objetivo deste trabalho foi avaliar a informação científica disponível sobre as técnicas disponíveis para realizar branqueamento dentário, vantagens e desvantagens de cada técnica, agentes branqueadores utilizados, mecanismos de ação e os seus efeitos adversos. Para tal foi efetuada uma pesquisa nas bases de dados PubMed e B-On de artigos publicados entre 2006-2016 com as seguintes palavras-chave: dental bleaching, teeth whitening, peroxides, branqueamento dentário, clareamento dentário. O branqueamento dentário, apresenta algumas limitações e contra-indicações, assim como vários efeitos adversos, que devem ser do conhecimento do Médico para este poder intervir devidamente. Foi percetível que um tratamento branqueador depende de inúmeros fatores e que a forma de atuação do profissional é tão importante para o sucesso do tratamento como o tipo de agente branqueador utilizado.
Resumo:
A series of perovskite-like oxides LaCu1-xMxO3 (M=Mn, Ti; 0.0 ⩽ x ⩽ 0.8) was prepared by amorphous citrate decomposition and characterized by XRD, ICP-OES and XPS techniques. The catalysts were tested in the Fenton-like degradation of paracetamol with H2O2, under mild reaction conditions, 25 °C and nearly neutral pH. Values of decomposition of paracetamol between 80 and 97% at 300 min were achieved for most of samples. The presence of the Cu2+/Cu+ pair at the surface of the catalysts is necessary to carry out the reaction and the catalysts containing higher amount of copper at the surface, resulted to be more active. The leaching of metals was less than 1%, which discards the contribution of the homogenous Fenton-like reaction and remarks the high stability of the metals into the mixed oxide network. The catalytic activity of LaCu0.8Mn0.2O3 was maintained after three cycles of reaction, which proves the stability and reusability of the catalyst.
Resumo:
Background: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. Results: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/ transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. Conclusions: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.
Resumo:
O presente estudo avaliou a eficiência agronômica da aplicação de pó de rochas silicatadas como fonte de potássio em cultivos consecutivos de milheto e alfafa em casa de vegetação. As rochas Biotita Xisto (BX), Sienito Ceraíma (TA15), Mafurito Acreúna (TA21), Sienito SANW (TA20), Biotita Gnaísse (EL02) e Fonolito Curimbaba (FN) foram aplicadas como fontes de potássio de liberação lenta em três doses de 1,25; 2,50 e 5,0 g de rocha moída por kg de solo. Cloreto de potássio foi utilizado como fertilizante convencional em doses de 0,10; 0,20 e 0,40 g de KCl kg-1 de solo. O solo utilizado nos experimentos foi um latossolo amarelo distrófico de textura média, com teor de potássio de 1,2 mmolc dm-3 solo. A rocha TA21 foi testada sem e com correção da acidez do solo. Com a finalidade de observar a dissolução das rochas em um ambiente com plantas foram realizados cinco cultivos consecutivos: (1) milheto (62 dias de cultivo); (2), (3) e (4) alfafa (80, 115 e 155 dias de cultivo, respectivamente) e (5) milheto, com 80 dias de cultivo. A produção de matéria seca no cultivo da alfafa foi significativamente menor do que o cultivo do milheto. As amostras de forrageira foram digeridas e quantificadas empregando o método de decomposição assistida por radiação micro-ondas com HNO3 + H2O2 para a determinação do teor de potássio extraído pelas plantas. As amostras de rochas foram caracterizadas por fluorescência de raios X, difração de raios X, microscopia eletrônica de varredura e distribuição de tamanho das partículas e submetidas a ensaios com solução extratora Mehlich-1, ácido acético e ácido fumárico 0,05mol L-1, em diferentes tempos de extração. Todos os extratos foram quantificados por espectrometria de emissão óptica com plasma acoplado indutivamente (ICP OES), sendo determinados os teores de Al, Ca, K, Mg, Mn, Na, P e Zn. O método da resina trocadora de íons foi aplicado para todas as amostras de rochas avaliadas, sendo quantificados K, Ca, Mg e P. Potássio solúvel foi determinado por fotometria de chama após extração com água quente, método oficial do Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Para extração drástica foram avaliados dois métodos de decomposição assistida por radiação microondas: com uso de água régia e água régia invertida com adição de H2O2 e 2 etapas de pré-decomposição. Os elementos Al, Ca, K, Mg, Mn, Na e Zn foram quantificados por ICP OES e os resultados obtidos foram comparados por meio do teste t pareado, que indicou não haver diferença significativa entre os métodos de decomposição no intervalo de 95% de confiança. A partir das concentrações obtidas nas extrações e da quantidade de potássio extraída nos cultivos foi realizado o cálculo de correlação entre os extratores e as plantas, considerando a eficiência agronômica. O uso da calagem nos solos que receberam adição da rocha TA21 influenciou significativamente a absorção de potássio, sendo que foi observado efeito relativo à liberação de K apenas quando essa rocha foi adicionada ao solo sem tratamento prévio com a calagem. A ordem decrescente de eficiência de extração de potássio, considerando o total aplicado nos tratamentos e o K extraído pelas plantas foi EL02 > TA21-SC > KCl > FN> BX> TA20 > TA15 > TA21. Os dois métodos de decomposição desenvolvidos apresentaram melhor correlação com o potássio extraído das rochas EL02. O estudo de casa de vegetação corroborou com os ensaios de extração realizados em laboratório, que indicaram que a rocha EL02 é a que possui o maior percentual de liberação de K em relação às demais rochas avaliadas.
Resumo:
Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.
Resumo:
Le microplastiche (MP) rientrano nella categoria di contaminanti emergenti per la loro pericolosità e persistenza nell'ecosistema. Gli impianti di trattamento acque sono identificati come una fonte principale di MP per l’ambiente. A causa della mancanza di metodi di separazione standard per le MP da fanghi ed acque reflue, nel presente lavoro sperimentale, sono testati diversi metodi di separazione delle MP da campioni di fanghi e acque di due impianti reali. Tramite analisi allo stereomicroscopio e identificazione della struttura polimerica mediante spettroscopia infrarossa in riflettanza totale attenuata (FTIR-ATR) si sono ottenute delle prime stime sulle quantità di MP all’interno dei depuratori che andranno vagliate con successive prove. In generale c’è una grande variabilità associata al punto di prelievo, al periodo di campionamento e alle caratteristiche del refluo. I dati sperimentali confermano la presenza di MP sia nelle acque che nei fanghi. Per la linea acque sono esaminati un trattamento convenzionale a fanghi attivi di un piccolo impianto (1) e un trattamento terziario di filtrazione a sabbia con peracetico e UV di un impianto di potenzialità superiore (2). Seppure le efficienze di rimozione siano alte (93,37% per l’impianto 1 e 59,80% per il 2), i carichi di MP rilasciati in ambiente sono elevati a causa delle portate trattate. Il fatto che MP della stessa morfologia e colore si ritrovino in setacci di differenti dimensioni e che le concentrazioni aumentino al diminuire della dimensione, suggerisce che subiscano svariate frammentazioni a monte del campionamento. Per i fanghi sono testati 3 metodi di pretrattamento individuando il migliore in quello con pre-digestione con H2O2 e separazione per densità con NaI che verrà in seguito implementata. Nei fanghi tendono a concentrarsi le MP rimosse dalla linea acque che di solito sono quelle di densità maggiore, infatti si riscontra prevalenza di microparticelle.
Resumo:
Neurodegenerative diseases (NDs) are characterized by a multifactorial etiology, in which oxidative stress and inflammation are the main causative factors. For this reason, increasing attention is being paid to the characterization and the identification of nutraceuticals and phytochemicals with intrinsic pleiotropic activity. Moreover, in a Circular Economy perspective, these natural compounds can be obtained also from renewable resources derived from the food industry by-products and can be used for both preventive and therapeutic purposes. The aim of this PhD program was to identify nutraceuticals and phytochemicals, both as extracts and pure compounds, and obtained from both plant and renewable sources, which due to their antioxidant and anti-inflammatory properties, were able to counteract cellular and molecular alterations that characterize NDs. Their neuroprotective potential has been evaluated in an in vitro model of neuroinflammation (the LPS-activated BV-2 microglial cell line), and/or in an in vitro model of neuronal oxidative stress (the neuron-like SH-SY5Y cell line differentiated with retinoic acid and exposed to H2O2). Four different projects, although deeply linked by the aforementioned common goal, have been discussed in this thesis: 1_ Impact of phenolic profile of different cherry cultivars on the potential neuroprotective effect in SH-SY5Y cells. 2_Anti-inflammatory activities of Spilanthol-rich essential oil from Acmella oleracea (L.). 3_Study of the anti-inflammatory activity of novel tacrine derivatives with lipids extracted from cashew nutshell liquid. 4_Coffee Silverskin (CSS) and Spent Coffee Grounds (SCG): coffee industry by-products as a promising source of neuroprotective agents. In general, it is, therefore, possible to conclude that the natural compounds studied in this thesis have been proven, due to their antioxidant and/or anti-inflammatory properties, to be valid preventive and therapeutic strategies for the treatment of NDs, to improve the life quality of these patients and of the general population by preventing and combating the onset of these deleterious diseases.
Resumo:
Moraxella catarrhalis (Mcat) represents a human pathogen implicated in debilitating diseases, such as Chronic Obstructive Pulmonary Disease (COPD). One of the hallmarks of COPD is the excessive neutrophil oxidative stress mediated by reactive oxygen species (ROS). Mcat shows a higher innate level of resistance to exogenous oxidative stress compared to the co-infecting human airways pathogens such as non-typeable Haemophilus influenzae (NTHi) but the underlying mechanisms are currently not well defined. In this thesis, we demonstrated that, differently from NTHi, Mcat was able to directly interfere with ROS production and ROS-related responses such as neutrophil extracellular traps (NET) and autophagy in differentiated neutrophilic-like dHL-60 cells and primary cells. The underlying mechanisms were shown to be phagocytosis/opsonins-independent but contact-dependent, due to the engagement of the immunosuppressive receptors. Indeed, we identified that through OmpCD porin, Mcat was able to engage Siglec inhibitory receptors suppressing ROS generation by the host cells. Furthermore, Mcat provided a safer niche for the co-infecting NTHi bacterium which was otherwise susceptible to the host antimicrobial arsenal. Subsequently, to deeply characterize the Mcat global transcriptional response to oxidative stress, an RNA-Seq experiment was performed on exponentially growing bacteria exposed to sublethal amounts of H2O2 or CuSO4, stimuli that the pathogens experienced once they are phagocytosed. We unraveled a previously unidentified common transcriptional program following H2O2 and CuSO4 exposure, demonstrating a similar defense mechanism to the stress conditions encountered in neutrophils. We ascertained new crucial factors for this pathogen response and established a novel in vivo Mcat infection model, using the invertebrate Galleria mellonella. Actually, we observed that deletion mutants of genes implicated in oxidative stress resistance exhibited reduced virulence. In conclusion, this work represents an important step in the understanding of Mcat innate resistance mechanisms to oxidative stress and further elucidate the virulence mechanisms during infection.
Resumo:
The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.
Resumo:
At the intersection of biology, chemistry, and engineering, biosensors are a multidisciplinary innovation that provide a cost-effective alternative to traditional laboratory techniques. Due to their advantages, biosensors are used in medical diagnostics, environmental monitoring, food safety and many other fields. The first part of the thesis is concerned with learning the state of the art of paper-based immunosensors with bioluminescent (BL) and chemiluminescent (CL) detection. The use of biospecific assays combined with CL detection and paper-based technology offers an optimal approach to creating analytical tools for on-site applications and we have focused on the specific areas that need to be considered more in order to ensure a future practical implementation of these methods in routine analyses. The subsequent part of the thesis addresses the development of an autonomous lab-on-chip platform for performing chemiluminescent-based bioassays in space environment, exploiting a CubeSat platform for astrobiological investigations. An origami-inspired microfluidic paper-based analytical device has been developed with the purpose of assesses its performance in space and to evaluate its functionality and the resilience of the (bio)molecules when exposed to a radiation-rich environment. Subsequently, we designed a paper-based assay to detect traces of ovalbumin in food samples, creating a user-friendly immunosensing platform. To this purpose, we developed an origami device that exploits a competitive immunoassay coupled with chemiluminescence detection and magnetic microbeads used to immobilize ovalbumin on paper. Finally, with the aim of exploring the use of biomimetic materials, an hydrogel-based chemiluminescence biosensor for the detection of H2O2 and glucose was developed. A guanosine hydrogel was prepared and loaded with luminol and hemin, miming a DNAzyme activity. Subsequently, the hydrogel was modified by incorporating glucose oxidase enzyme to enable glucose biosensing. The emitted photons were detected using a portable device equipped with a smartphone's CMOS (complementary metal oxide semiconductor) camera for CL emission detection.