933 resultados para Graph matching
Resumo:
With the popularization of GPS-enabled devices such as mobile phones, location data are becoming available at an unprecedented scale. The locations may be collected from many different sources such as vehicles moving around a city, user check-ins in social networks, and geo-tagged micro-blogging photos or messages. Besides the longitude and latitude, each location record may also have a timestamp and additional information such as the name of the location. Time-ordered sequences of these locations form trajectories, which together contain useful high-level information about people's movement patterns.
The first part of this thesis focuses on a few geometric problems motivated by the matching and clustering of trajectories. We first give a new algorithm for computing a matching between a pair of curves under existing models such as dynamic time warping (DTW). The algorithm is more efficient than standard dynamic programming algorithms both theoretically and practically. We then propose a new matching model for trajectories that avoids the drawbacks of existing models. For trajectory clustering, we present an algorithm that computes clusters of subtrajectories, which correspond to common movement patterns. We also consider trajectories of check-ins, and propose a statistical generative model, which identifies check-in clusters as well as the transition patterns between the clusters.
The second part of the thesis considers the problem of covering shortest paths in a road network, motivated by an EV charging station placement problem. More specifically, a subset of vertices in the road network are selected to place charging stations so that every shortest path contains enough charging stations and can be traveled by an EV without draining the battery. We first introduce a general technique for the geometric set cover problem. This technique leads to near-linear-time approximation algorithms, which are the state-of-the-art algorithms for this problem in either running time or approximation ratio. We then use this technique to develop a near-linear-time algorithm for this
shortest-path cover problem.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This article presents applications of reconfigurable matching networks for RF amplifier design. Two possible solutions are given, one where the switching element is a PIN diode, and the other is based on graphene. Due to the fact that its conductivity depends on applied bias voltage, the graphene-based circuits can be used in microwave circuits as controllable elements. The structure of the proposed switch is very simple and it is particularly convenient for microstrip-based circuits. Because of that, a design of reconfigurable amplifier with the graphene-based switch is presented together with the one which has the PIN diode switch. Both amplifiers have the same specifications, and the one with the PIN diode switch is fabricated. The amplifier utilizing the PIN switch was used as a reference to make a comparison the two types of switches. Results of both amplifiers are very similar which indicates possible future applications of the graphene-based switch.
Resumo:
People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.
Resumo:
De Groot, D. (2016). Flexibele Leerroutes voor Propedeusestudenten: Grounded Theory Onderzoek naar het Identificeren van Studentkenmerken in de Matching, ten behoeve van een Vraaggerichte, Gepersonaliseerde Leerroute in de Propedeuse Social Work. Juli, 26, 2016, Heerlen, Nederland: Open Universiteit.
Resumo:
Graph analytics is an important and computationally demanding class of data analytics. It is essential to balance scalability, ease-of-use and high performance in large scale graph analytics. As such, it is necessary to hide the complexity of parallelism, data distribution and memory locality behind an abstract interface. The aim of this work is to build a scalable graph analytics framework that does not demand significant parallel programming experience based on NUMA-awareness.
The realization of such a system faces two key problems:
(i)~how to develop a scale-free parallel programming framework that scales efficiently across NUMA domains; (ii)~how to efficiently apply graph partitioning in order to create separate and largely independent work items that can be distributed among threads.
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
The Pennsylvania Adoption Exchange (PAE) helps case workers who represent children in state custody by recommending prospective families for adoption. We describe PAE's operational challenges using case worker surveys and analyze child outcomes through a regression analysis of data collected over multiple years. A match recommendation spreadsheet tool implemented by PAE incorporates insights from this analysis and allows PAE managers to better utilize available information. Using a discrete-event simulation of PAE, we justify the value of a statewide adoption network and demonstrate the importance of better information about family preferences for increasing the percentage of children who are successfully adopted. Finally, we detail a series of simple improvements that PAE achieved through collecting more valuable information and aligning incentives for families to provide useful preference information.
Resumo:
A parallel method for the dynamic partitioning of unstructured meshes is described. The method introduces a new iterative optimisation technique known as relative gain optimisation which both balances the workload and attempts to minimise the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more rapidly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope of a large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.
Resumo:
In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.
Resumo:
This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyperheuristic framework, a Tabu Search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems.