915 resultados para Gradient Flows
Resumo:
After Russia annexed Crimea in early 2014 and then intervened, manu militari, in the Eastern part of Ukraine, the European Union wanted to show its disapproval and put pressure on Russia to change its behaviour. A wide variety of measures were taken, including the imposition of individual restrictions, such as asset freezes and travel bans, but also the suspension of development loans from the EBRD. But the EU (together with the United States) also took, in July and September 2014, a set of broader measures: limited access to EU primary and secondary capital markets for targeted Russian financial institutions and energy and defence companies; export and import bans on trade in arms; an export ban for dual-use goods and reduction of Russia’s access to sensitive technologies and services linked to oil production.
Resumo:
Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional gradient-domain path tracing in challenging visibility conditions, similarly as conventional bidirectional path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.
Resumo:
Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
Resumo:
Sediment proxy data from the Norwegian, Greenland, and Iceland seas (Nordic seas) are presented to evaluate surface water temperature (SST) differences between Holocene and Eemian times and to deduce from these data the particular mode of surface water circulation. Records from planktic foraminiferal assemblages, CaCO3 content, oxygen isotopes of foraminifera, and iceberg-rafted debris form the main basis of interpretation. All results indicate for the Eemian comparatively cooler northern Nordic seas than for the Holocene due to a reduction in the northwardly flow of Atlantic surface water towards Fram Strait and the Arctic Ocean. Therefore, the cold polar water flow from the Arctic Ocean was less influencial in the southwestern Nordic seas during this time. As can be further deduced from the Eemian data, slightly higher Eemian SSTs are interpreted for the western Iceland Sea compared to the Norwegian Sea (ca. south of 70°N). This Eemian situation is in contrast to the Holocene when the main mass of warmest Atlantic surface water flows along the Norwegian continental margin northwards and into the Arctic Ocean. Thus, a moderate northwardly decrease in SST is observed in the eastern Nordic seas for this time, causing a meridional transfer in ocean heat. Due to this distribution in SSTs the Holocene is dominated by a meridional circulation pattern. The interpretation of the Eemian data imply a dominantly zonal surface water circulation with a steep meridional gradient in SSTs.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 385-387.
Resumo:
Mode of access: Internet.
Resumo:
Includes abstract.
Resumo:
"May 1975"--Cover.
Resumo:
"Project sponsored by the Office of Naval Research under Contract N8onr-500."
Resumo:
Photocopy.