986 resultados para Graded Quantum Yang-baxter Reflection Equation
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.
Resumo:
The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.
Resumo:
The state of Ceará, Brazil, has 75% of its area covered by Brazilian semiarid, with its peculiar features. In this state, the dams are constituted in water structure of strategic importance, ensuring, both in time and space, the development and supply of water to population. However, construction of reservoirs results in various impacts that should be carefully observed when deciding on their implementation. One of the impacts identified as negative is the increased evaporation, which constitutes a major component of water balance in reservoirs, especially in arid regions. Several methods for estimating evaporation have been proposed over time, many of them deriving from the Penman equation. This study evaluated six different methods for estimating evaporation in order to determine the most suitable for use in hydrological models for water balance in reservoirs in the state of Ceará. The tested methods were proposed by Penman, Kohler-Nordenson-Fox, Priestley-Taylor, deBruim-Keijman, Brutsaert-Stricker and deBruim. The methods presented good performance when tested for water balance during the dry season, and the Priestley-Taylor was the most appropriate, since the data from de simulated water balance with evaporation estimated by this method were the closest of the water balance data observed from measures of reservoir level and the elevation-volume curve provided by the Company of Management of Water Resources of the state of Ceará - COGERH.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
Due to the lack of information concerning maximum rainfall equations for most locations in Mato Grosso do Sul State, the alternative for carrying out hydraulic work projects has been information from meteorological stations closest to the location in which the project is carried out. Alternative methods, such as 24 hours rain disaggregation method from rainfall data due to greater availability of stations and longer observations can work. Based on this approach, the objective of this study was to estimate maximum rainfall equations for Mato Grosso do Sul State by adjusting the 24 hours rain disaggregation method, depending on data obtained from rain gauge stations from Dourado and Campo Grande. For this purpose, data consisting of 105 rainfall stations were used, which are available in the ANA (Water Resources Management National Agency) database. Based on the results we concluded: the intense rainfall equations obtained by pluviogram analysis showed determination coefficient above 99%; and the performance of 24 hours rain disaggregation method was classified as excellent, based on relative average error WILMOTT concordance index (1982).
Resumo:
In this Thesis I discuss the dynamics of the quantum Brownian motion model in harmonic potential. This paradigmatic model has an exact solution, making it possible to consider also analytically the non-Markovian dynamics. The issues covered in this Thesis are themed around decoherence. First, I consider decoherence as the mediator of quantum-to-classical transition. I examine five different definitions for nonclassicality of quantum states, and show how each definition gives qualitatively different times for the onset of classicality. In particular I have found that all characterizations of nonclassicality, apart from one based on the interference term in the Wigner function, result in a finite, rather than asymptotic, time for the emergence of classicality. Second, I examine the diverse effects which coupling to a non-Markovian, structured reservoir, has on our system. By comparing different types of Ohmic reservoirs, I derive some general conclusions on the role of the reservoir spectrum in both the short-time and the thermalization dynamics. Finally, I apply these results to two schemes for decoherence control. Both of the methods are based on the non-Markovian properties of the dynamics.
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.
Resumo:
Contemporary organisations have to embrace the notion of doing ‘more with less’. This challenges knowledge production within companies and public organisations, forcing them to reorganise their structures and rethink what knowledge production actually means in the context of innovation and how knowledge is actually produced among various professional groups within the organisation in their everyday actions. Innovations are vital for organisational survival, and ‘ordinary’ employees and customers are central but too-often ignored producers of knowledge for contemporary organisations. Broader levels of participation and reflexive practices are needed. This dissertation discusses the missing links between innovation research conducted in the context of industrial management, arts, and culture; applied drama and theatre practices (specifically post-Boalian approaches); and learning – especially organising reflection – in organisational settings. This dissertation (1) explores and extends the role of research-based theatre to organising reflection and reflexive practices in the context of practice-based innovation, (2) develops a reflexive model of RBT for investigating and developing practice-based organisational process innovations in order to contribute to the development of a tool for innovation management and analysis, and (3) operationalises this model within private- and publicsector organisations. The proposed novel reflexive model of research-based theatre for investigating and developing practice-based organisational process innovations extends existing methods and offers a different way of organising reflection and reflexive practices in the context of general innovation management. The model was developed through five participatory action research processes conducted in four different organisations. The results provide learning steps – a reflection path – for understanding complex organisational life, people, and relations amid renewal and change actions. The proposed model provides a new approach to organising and cultivating reflexivity in practice-based innovation activities via research-based theatre. The results can be utilised as a guideline when processing practice-based innovation within private or public organisations. The model helps innovation managers to construct, together with their employees, temporary communities where they can learn together through reflecting on their own and each others’ experiences and to break down assumptions related to their own perspectives. The results include recommendations for practical development steps applicable in various organisations with regard to (i) application of research-based theatre and (ii) related general innovation management. The dissertation thus contributes to the development of novel learning approaches in knowledge production. Keywords: practice-based innovation, research-based theatre, learning, reflection, mode 2b knowledge production
Resumo:
Transport properties of GaAs / δ – Mn / GaAs / InxGa1-xAs / GaAs structure with Mn δ – layer, which is separated from InxGa1-xAs quantum well (QW) by 3 nm thick GaAs spacer was investigated. This structure with high mobility was characterized by X-ray difractometry and reflectometry. Transport and electrical properties of the structure were measured by using Pulsed Magnetic Field System (PMFS). During investigation of the Shubnikov – de Haas and the Hall effects the main parameters of QW structure such as cyclotron mass, Fermi level, g – factor, Dingle temperature and concentration of holes were estimated. Obtained results show high quality of the prepared structure. However, anomalous Hall effect at temperatures 2.09 K, 3 K, 4.2 K is not clearly observed. Attempts to identify magnetic moment were made. For this purpose the polarity of the filed was changed to the opposite at each shot. As a result hysteresis loop was not observed in the magnetic field dependences of the anomalous Hall resistivity.This can be attributed to the imperfection of the experimental setup.
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
This Thesis discusses the phenomenology of the dynamics of open quantum systems marked by non-Markovian memory effects. Non-Markovian open quantum systems are the focal point of a flurry of recent research aiming to answer, e.g., the following questions: What is the characteristic trait of non-Markovian dynamical processes that discriminates it from forgetful Markovian dynamics? What is the microscopic origin of memory in quantum dynamics, and how can it be controlled? Does the existence of memory effects open new avenues and enable accomplishments that cannot be achieved with Markovian processes? These questions are addressed in the publications forming the core of this Thesis with case studies of both prototypical and more exotic models of open quantum systems. In the first part of the Thesis several ways of characterizing and quantifying non-Markovian phenomena are introduced. Their differences are then explored using a driven, dissipative qubit model. The second part of the Thesis focuses on the dynamics of a purely dephasing qubit model, which is used to unveil the origin of non-Markovianity for a wide class of dynamical models. The emergence of memory is shown to be strongly intertwined with the structure of the spectral density function, as further demonstrated in a physical realization of the dephasing model using ultracold quantum gases. Finally, as an application of memory effects, it is shown that non- Markovian dynamical processes facilitate a novel phenomenon of timeinvariant discord, where the total quantum correlations of a system are frozen to their initial value. Non-Markovianity can also be exploited in the detection of phase transitions using quantum information probes, as shown using the physically interesting models of the Ising chain in a transverse field and a Coulomb chain undergoing a structural phase transition.
Resumo:
In this Thesis various aspects of memory effects in the dynamics of open quantum systems are studied. We develop a general theoretical framework for open quantum systems beyond the Markov approximation which allows us to investigate different sources of memory effects and to develop methods for harnessing them in order to realise controllable open quantum systems. In the first part of the Thesis a characterisation of non-Markovian dynamics in terms of information flow is developed and applied to study different sources of memory effects. Namely, we study nonlocal memory effects which arise due to initial correlations between two local environments and further the memory effects induced by initial correlations between the open system and the environment. The last part focuses on describing two all-optical experiment in which through selective preparation of the initial environment states the information flow between the system and the environment can be controlled. In the first experiment the system is driven from the Markovian to the non- Markovian regime and the degree of non-Markovianity is determined. In the second experiment we observe the nonlocal nature of the memory effects and provide a novel method to experimentally quantify frequency correlations in photonic environments via polarisation measurements.
Resumo:
-
Resumo:
julkaisumaa: 372 IE IRL Irlanti
Resumo:
After introducing the no-cloning theorem and the most common forms of approximate quantum cloning, universal quantum cloning is considered in detail. The connections it has with universal NOT-gate, quantum cryptography and state estimation are presented and briefly discussed. The state estimation connection is used to show that the amount of extractable classical information and total Bloch vector length are conserved in universal quantum cloning. The 1 2 qubit cloner is also shown to obey a complementarity relation between local and nonlocal information. These are interpreted to be a consequence of the conservation of total information in cloning. Finally, the performance of the 1 M cloning network discovered by Bužek, Hillery and Knight is studied in the presence of decoherence using the Barenco et al. approach where random phase fluctuations are attached to 2-qubit gates. The expression for average fidelity is calculated for three cases and it is found to depend on the optimal fidelity and the average of the phase fluctuations in a specific way. It is conjectured to be the form of the average fidelity in the general case. While the cloning network is found to be rather robust, it is nevertheless argued that the scalability of the quantum network implementation is poor by studying the effect of decoherence during the preparation of the initial state of the cloning machine in the 1 ! 2 case and observing that the loss in average fidelity can be large. This affirms the result by Maruyama and Knight, who reached the same conclusion in a slightly different manner.