904 resultados para Globe Land Cover - Share
Resumo:
Article in Courier Mail. Friday July 22, 2011.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
The researcher was invited to photograph athletes in the lead-up to the 2006 Commonwealth Games held in Melbourne. She photographed four indigenous athletes, to produce a series of four large-scale cotton rag prints, 1 meter x 1 meter, printed onto photorag paper from digital files. “My photographic practice can be described as both political and spiritual, in the sense that as an Aboriginal Indigenous artist I take stock of the rationalising effect of the technologies I use, and create work that evokes nature and spirit. My methods often involve re-photographing or digitally re-working landscape photographs and adding historical or cultural icons of significance. Working with Indigenous athletes has been an honour and a pleasure. I admire the athletes’ passion and dedication to their chosen sport, and above all their humility, which seems a trait somewhat in contrast to what it takes to attain the highest levels of achievement. Indigenous athletes are wonderful role models for all Australians, and in making creative work that places their luminary presence with the land, I am aligning sportspeople with a deep sense of nature and spirit.” – Leah King-Smith. These works were commissioned by the National Portrait Gallery for the exhibition FLASH: Australian Athletes in Focus. The exhibition was a significant element in Melbourne2006 Festival, the cultural festival of the Commonwealth Games. The exhibition was prominently reviewed in Portrait: Magazine of Australian and International Portraiture and was subsequently remounted at Old Parliament House, Canberra (15 July to 12 November, 2006). One image was used for the front cover of Art Monthly, (March 2006).
Resumo:
Rural property in Australia has seen significant market resurgence over the past 3 years, with improved seasonal conditions in a number of states, improved commodity prices and a greater interest and purchase of rural land by major international corporations and investment institutions. Much of this change in perspective in relation to rural property as an asset class can be linked to the food shortage of 2007 and the subsequent interest by many countries in respect to food security. This paper will address the total and capital return performance of a major agricultural area and compare these returns on the basis of both location of land and land use. The comparison will be used to determine if location or actual land use has a greater influence on rural property capital and income returns. This performance analysis is based on over 40,000 rural sales transactions. These transactions cover all market based rural property transactions in New South Wales, Australia for the period January 1990 to December 2010. Correlation analysis and investment performance analysis has also been carried out to determine the possible relationships between location and land use and subsequent changes in rural land capital values.