921 resultados para Gibbs free energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowirenucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (SD 15) years and 23·3 (SD 5·1) kg/m2, respectively, for men and 37 (SD 14) years and 24·1 (SD 5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI 218,223) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI 28·2, 26·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This 600+ page online education program provides free access to a comprehensive education and training package that brings together the knowledge of how countries, specifically Australia, can achieve at least 60 percent cuts to greenhouse gas emissions by 2050. This resource has been developed in line with the activities of the CSIRO Energy Transformed Flagship research program which is focused on research that will assist Australia to achieve this target. This training package provides industry, governments, business and households with the knowledge they need to realise at least 30 percent energy efficiency savings in the short term while providing a strong basis for further improvement. It also provides an updated overview of advances in low carbon technologies, renewable energy and sustainable transport to help achieve a sustainable energy future. Whist this education and training package has an Australian focus, it outlines sustainable energy strategies and provide links to numerous online reports which will assist climate change mitigation efforts globally. This training program seeks to compliment other initiatives seeking to encourage the reduction of greenhouse gas emissions through behaviour change, sustainable consumption, and constructive changes in economic incentives and policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In this study, we have compared GE in active and inactive males, and we have characterised relationships with body composition (fat and fat free mass) and EE. Forty-four males (Active: n=22, Inactive: n=22; range BMI 21-36kg/m2; range percent fat mass 9-42%) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by 13C-octanoic acid breath test, body composition by air displacement plethysmography, resting metabolic rate (RMR) by indirect calorimetry and activity EE (AEE) by accelerometry. Results showed that GE was faster in active compared to inactive males (mean ±SD half time (t1/2): Active: 157±18 and Inactive: 179±21 min, p<0.001). When data from both groups were pooled, GE t1/2 was associated with percent fat mass (r=0.39, p<0.01) and AEE (r =-0.46, p<0.01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percent fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE and lower percent fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A knowledge of energy expenditure in infancy is required for the estimation of recommended daily amounts of food energy, for designing artificial infant feeds, and as a reference standard for studies of energy metabolism in disease states. Objectives: The objectives of this study were to construct centile reference charts for total energy expenditure (TEE) in infants across the first year of life. Methods: Repeated measures of TEE using the doubly labeled water technique were made in 162 infants at 1.5, 3, 6, 9 and 12 months. In total, 322 TEE measurements were obtained. The LMS method with maximum penalized likelihood was used to construct the centile reference charts. Centiles were constructed for TEE expressed as MJ/day and also expressed relative to body weight (BW) and fat-free mass (FFM). Results: TEE increased with age and was 1.40,1.86, 2.64, 3.07 and 3.65 MJ/day at 1.5, 3, 6, 9 and 12 months, respectively. The standard deviations were 0.43, 0.47, 0.52,0.66 and 0.88, respectively. TEE in MJ/kg increased from 0.29 to 0.36 and in MJ/day/kg FFM from 0.36 to 0.48. Conclusions: We have presented centile reference charts for TEE expressed as MJ/day and expressed relative to BW and FFM in infants across the first year of life. There was a wide variation or biological scatter in TEE values seen at all ages. We suggest that these centile charts may be used to assess and possibly quantify abnormal energy metabolism in disease states in infants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard Gibbs energy change accompanying the conversion of rare earth oxides to oxysulfides by reaction of rare earth oxides with diatomic sulfur gas has been measured in the temperature range 870 to 1300 K using the solid state cell: Pt/Cu+Cu2S/R2O2S+R2O3‖(CaO)ZrO2‖Ni+NiO, Pt where R=La, Nd, Sm, Gd, Tb, and Dy. The partial pressure of diatomic sulfur over a mixture of rare earth oxide (R2O3) and oxysulfide (R2O2S) is fixed by the dissociation of Cu2S to Cu in a closed system. The buffer mixture of Cu+Cu2S is physically separated from the rare earth oxide and oxysulfide to avoid complications arising from interaction between them. The corresponding equilibrium oxygen partial pressure is measured with an oxide solid electrolyte cell. Gibbs energy change for the conversion of oxide to the corresponding oxysulfide increases monotonically with atomic number of the rare earth element. Second law enthalpy of formation also shows a similar trend. Based on this empirical trend Gibbs energies of formation of oxysulfides of Pr, Eu, Ho, and Er are estimated as a function of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.