985 resultados para Geology estratigrafica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic technique is in the leading position for discovering oil and gas trap and searching for reserves throughout the course of oil and gas exploration. It needs high quality of seismic processed data, not only required exact spatial position, but also the true information of amplitude and AVO attribute and velocity. Acquisition footprint has an impact on highly precision and best quality of imaging and analysis of AVO attribute and velocity. Acquisition footprint is a new conception of describing seismic noise in 3-D exploration. It is not easy to understand the acquisition footprint. This paper begins with forward modeling seismic data from the simple sound wave model, then processes it and discusses the cause for producing the acquisition footprint. It agreed that the recording geometry is the main cause which leads to the distribution asymmetry of coverage and offset and azimuth in different grid cells. It summarizes the characters and description methods and analysis acquisition footprint’s influence on data geology interpretation and the analysis of seismic attribute and velocity. The data reconstruct based on Fourier transform is the main method at present for non uniform data interpolation and extrapolate, but this method always is an inverse problem with bad condition. Tikhonov regularization strategy which includes a priori information on class of solution in search can reduce the computation difficulty duo to discrete kernel condition disadvantage and scarcity of the number of observations. The method is quiet statistical, which does not require the selection of regularization parameter; and hence it has appropriate inversion coefficient. The result of programming and tentat-ive calculation verifies the acquisition footprint can be removed through prestack data reconstruct. This paper applies migration to the processing method of removing the acquisition footprint. The fundamental principle and algorithms are surveyed, seismic traces are weighted according to the area which occupied by seismic trace in different source-receiver distances. Adopting grid method in stead of accounting the area of Voroni map can reduce difficulty of calculation the weight. The result of processing the model data and actual seismic demonstrate, incorporating a weighting scheme based on the relative area that is associated with each input trace with respect to its neighbors acts to minimize the artifacts caused by irregular acquisition geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shijiawan –Lijiacha area, lying on the northeastern part of the Shanbei Slope of Ordos Basin, was selected as studying area. The previous explorations proved that the 2nd segment and 6th segment of the Yanchang Formation are the most important oil-bearing formations. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity. Therefore, with petrology methodologies, such as outcrop observation, core description, geophysical logging interpretation, thin section determination, scanning electron microscope, as well as rock property analysis, the reservoirs was were systematically studied and characterized. The sedimentary micro-facies, seals, reservoir-seal combines, migration pathways and entrapping modes were taken into account. The author tempted to establish a base for further studies on reservoirs and on petroleum geology, and to provide some reliably geological evidences for later prospect activities. It was found that the sediments in the 2nd and 3rd segments of the Yanchang Formation in Shijiawan –Lijiacha area were deposited in braided rivers, and most sandy-bodies were identified as channel sandbars. The 4+5th and 6th segments were principally deposited in deltaic-plain environment, consisting of corresponding sub-facies such as distributary channels, natural levee, crevasse-splay and marsh. The skeleton sandy-bodies were identified as sandy sediments of distributary channels. The sand grains in reservoir in studied area possess generally low mineralogical maturity and moderate structural maturity, and the form of pores may be classified into intergranular types and dissolved types. Most reservoirs of Yanchang Formation in Shijiawan –Lijiacha area belong to extreme low-porosity low-permeability ones (type III), and the 2nd sediments belongs to low permeability one (type II) and the 6th segment belong to super low-permeability one(type Ⅳ). The reservoirs in the 2nd segment behave more heterogeneous than those in the 6th segment. The statistic analysis results show that, for 6th and 4+5th segments, the high quality reservoir-seal combines may be found everywhere in the studied area except in the northwest and the southwest parts; and for 1st and 2nd segments, in the northeast, central and southwest parts Petroleum migration happened in the duration of the Early Cretaceous period in both lateral and vertical directions. The migration paths were mainly constructed by permeable sandy-bodies. The superimposed channel sandy-bodies consist of the principal part of the system of carriers. the vertical fractures, that may travel through the seals between reservoirs, offered the vertical paths for migrating oil. It may be synthesized that oil coming from south kitchens migrated first laterally in carriers in the 6th segment. When arrived at the studied area, oil will migration laterally or/and vertical within both the sandy-bodies and fractures, in a climbing-stair way. The results demonstrate that the oil was entrapped in traps structure-lithology and/or lithology traps. In some cases, the hydrodynamic force may help to trap oil. Accumulation of oil in the area was mainly controlled by sedimentary facies, seals, structure, and heterogeneity of reservoir in the 2nd, 4+5th and 6th segments. Especially, the oil distributions in both the 2nd and 6th segments were obviously influenced by seals in the 4+5th segment. The existence of seals in 1st segment seems important for accumulation in the 2nd segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ordos Basin is a large-scale craton superimposed basin locating on the west of the North China platform, which was the hotspot of interior basin exploration and development. Qiaozhen oil field located in the Ganquan region of south-central of Ordos Basin. The paper is based on the existing research data, combined with the new theory and progress of the sedimentology, sequence stratigraphy, reservoir sedimentology, petroleum geology, etc, and analyzes systematically the sedimentary and reservoir characteristics in the chang2 and chang1 oil-bearing strata group of Yanchang formation On the basis of stratigraphic classification and comparison study, the strata chang2 and chang1 were divided into five intervals. Appling the method of cartography with single factor and dominance aspect, we have drawn contour line map of sand thickness, contour line map of ratio between sand thickness and stratum thickness. We discussed distribution characteristics of reservoir sand body and evolution of sedimentary facies and microfacies. And combining the field type section , lithologic characteristics, sedimentary structures, the sedimentary facies of single oil well and particle size analysis and according to the features of different sequence, the study area was divided into one sedimentary facies、three parfacies and ten microfacies. The author chew over the characteristics of every facies, parfacies and microfacies and spatial and temporal distribution. Comprehensive research on petrologic characteristics of reservoir , diagenesis types, pore types, distribution of sand bodies, physical properties, oiliness, reservoir heterogeneities, characteristics of interlayer, eventually research on synthetic classifying evaluation of reservoir.The reservoir is classified four types: Ⅰ、Ⅱ、Ⅲ、Ⅳ and pore type, fracture-porosity type. Take reservoir's average thickness, porosity, permeability, oil saturation and shale content as parameters, by using clustering analysis and discriminant analysis, the reservoir is classified three groups. Based on the evaluation, synthetizing the reservoir quality, the sealing ability of cap rock, trap types, reservoir-forming model ,in order to analyze the disciplinarian of accumulation oil&gas. Ultimately, many favorable zones were examined for chang23,chang223,chang222,chang221,chang212,chang12,chang11 intervals. There are twenty two favorable zones in the research area. Meanwhile deploy the next disposition scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex fault block reservoir is very important type in chinese oilfield.The reservoir have for many years and it has been the important issue of oil-gas exploration and development in china that how to increase reserves and production. Therefore,taking the Pucheng-oil field as an example, the article intensive study the geologic feature of oil pool, correctly recognize the rule of oil-gas accumulation and based on the fine representation of the characteristic of reservoir, research the remaining oil in high developed area,which is important for progressive exploratioon and development and taping the remaining oil. The article multipurpose uses the data of geology,drilling,wellloging, analysis and assay and so on, under the guidance multi-disciplinary theory, intensify the comprehension of the geologic feature of oil pool in high developed oil field. Based on the high-resolution sequence stratigraphic framework ,the article points out that Es_2 upper 2+3 reservoir in the south area of Pucheng oilfield is in the depositional environment of Terminal Fan, which has constant supply of sedimentary source ,and build the sedimentation model. Studies have shown that the major reservoir in work area is the distributary channel sandbody in central Sub-facies of Terminal Fan,secondary is both lateral accretion sandbodies of channel sands,nearby and far away from the channel overflowing sandbodies in front of the fan. The article analyze the effect of depth of burial of the reservoir, sandstone structure, strata pressure and bioturbate structure on control action of physical property for reservoir and indicate that deposition and diagenesis are major controlling factors.By building the model of reservoir heterogeneity, the article show the magnitude of reservoir heterogeneity ,the genesis and identification mark of Interlayer and build the the model of interlayer. in this area the vertical distribution of interlayer is complicated,but the intraed interlayer distribute steady. Thick interlayer is steady and the thin is relatively spreaded. By building models of fault sealing,stress field and fluid potential field of the south of the pucheng oil field, the regular pattern of fluid migration and accumulation runs out. By researching the elements of oil accumulation, migration pathway and accumulation period with quantification and semiquantitative methods,we bulit the oil-gas reservoir-forming mode of the south of the pucheng oil field,which will be the foundation of the rolling exploratory development in the future. We promulgated the master control element and the rule of distribution of the remaining oil with the upside 2+3 oil layer in shaer in the south of the pucheng oil field as an example.In this area, the formation and the distribution of the remaining oil is controled by the sedimentary microfacies, reservoir heterogeneity,fault and reservoir engineering. The remaining oil is concentrated in the vicinity of the gas cap, updip of the fault block and the area with incomplete flooding. Remaining oil saturation in some area can get 50%, so there are many places in which we can enhance oil recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The black rock series of the Upper Ordovician - Lower Silurian in Yangtze area are important source rocks and have exceptional characteristics of sediment, biology, element geochemistry, carbon and oxygen isotope, organic geochemistry and etc. These characteristics are the reflection of important geology events. Due to scarce system research, many problems that relate to the development mechanism of source rocks are not solved. And this restricts the exploration of Oil and gas in South China. In this paper, author studied the palaeo-climate, palaeo-structure and palaeo-environment of the Upper Ordovician - Lower Silurian in Yangtze area by sedimentology, palaeobiology and geochemistry, especially the element geochemistry and isotope geochemistry. The environment model of source rocks is established and some conclusions are drawn. The Upper Ordovician - Lower Silurian sediment types in Yangtze area are mostly black shales, next, mudstone, shell limestone and siltystone. During the Late Ordovician and Earily Silurian periods, a series of big upheaval and depressed are distributed in Yangtze area, and the strata pattern of interphase upheaval and depressed led to Yangtze palaeosea isolated with outside sea. So the stagnant and anoxic environment that are the favorable factor of rich organic black shales sediment is formed in Yangtze area. That Chemical Index of Alteration (CIA) values of the lower Wufeng formation and Longmaxi formation exhibits moderate chemistry weathering suggests they were deposited under the circumstances of the warm and humid climate. However, the large difference of the CIA values of N.extraordinarius-N.ojsuensis biozone suggests that climate is changeful. Therefore, there were two different kinds of climates in the course of the deposition of the Wufeng formation and Longmaxi formation. During the Late Ordovician - Earily Silurian periods, in Yangtze palaeosea, the surface water which is full of rich nutriment and abundant bacterium - algae has high palaeo-productivity that is obvious difference in the different space – time. The content of sulphate changes gradually from the surface water columns to the deep water columns. That is, salinity in the surface water columns is serious low and the salinity in deep water columns is normal. Salinity delamination is favor of the forming of deep anoxic environment. During Wufeng period, the oxidated and low sulfate environment exists in the upper Yangtze palaeosea, while the anoxic and normal salinity environment occurs in the lower Yangtze palaeosea. During the Late Wufeng and Guanyinqiao periods, the steady anoxic environment is replaced by oxidated environment. During the Longmaxi period, layered and anoxic environment recur. In Yangtze area, studies of δ13C of sedimentary organic carbon show a positive δ13C excursion up to 4‰ in the Guanyinqiao stage and then, acute negative excursion in the earily Longmaxi stage. These organic carbon isotopes curve are not only efficient measure of carving up strata borderline, but also reflected the change of originality productivity. These organic carbon isotopes curves showed the process of the enhanced embedding of the global organic carbon. Anoxic event is the main factor of increasing organic carbon embedding speed. And the reduced organic carbon embedding in Hirnantian stage is due to the water column with abundant oxygen. The δ34S values are gradually positive excursion from P.pacificus biozone to N.extraordinarius biozone, and reach the maximum in the Upper Hirnantian stage. Then, the δ34S values are negative excursion. The excursions of δ13C and δ34S reflect the acute change of environment. The formation of source rocks is largely dependent on the nature of organisms from which kerogen is derived and the preservation conditions of organic matter, which are fundamentally dependent on a favourable combination of various elements in which organisms live and are subsequently buried. These elements include palaeoclimate, palaeostructure and palaeoenvironmental conditions. Based on above mentioned circumstance, the coupling connection of source rock and the palaeoclimate, and of palaeostructure and palaeoenvironmental conditions are confirmed, and the “anoxic-marginal depression-photosynthesis” environemental model is established. It is indicated that anoxic played important role in production of organic matter. The produced organic matter was accumulated in marginal depression of the Yangtze area. The photosynthesis is favor of the high productivity. Source rocks have a good perspective, like that of “hot shale” deposited in North Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two major problems that have been concerned all the times, which are the mechanics characters of joint rock mass and the criterion for stability of engineering rock. Aim at the two problems, several works were conducted as follow: (1) Firstly, the mechanics characters of rock mass was studied by means of the Distinct Element Code. Subsequently, it was studied that the sensibility of joint surface roughness, strength of joint wall, joint stiffness ( i.e. tangential and normal stiffness) on the rock mass strength. (2) Based on the experimental rock mass classification methods of RMR and GSI, the program of “Parameters Calculation of the Rock Mass ” was developed. It has realized the rapid choice of rock mass parameters. (3) The concept of Representive Element Volume was induced based on the study of dimensional effect of rock mass. The Representive Element Volume of the horizontal and vertical pillar (ab. Two Pillars ) in the 2nd zone of Jinchuan mine were gained by the Geology Statistic Method and the Distinct Element Code. And then, the strength and deformatiom parameters of rock mass of the Two Pillars were obtained through numerical experiment. (4) From the confining depressure after thriaxial compression test of rock sample, it was concluded that the failure of rock is caused mainly by the lateral deformation and energy release happened during the confining depressure processure. The criterion of plastic energy catastrophe of rock engineering failure was proposed and validated. Subsquently, the stability of the horizontal pillar and Qianjiangping landslide in Three Gorges was judged by means of above-mentioned method. (5) Based on the fact there is a phenomenon of increasing energy concentration while the rock mass was compressed, rock information entropy (i.e. energy distribution entropy) was proposed. And it was revealed that there was change of energy distribution entropy while the rock mass was compressed to failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photography,a new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the popular CERCHAR testing to measure the abrasiveness of rock which is CERCHAR abrasiveness index(CAI). The digital imagine processing program IPP is used to quantify the rock texture such as the grain size, the shape of grain and the index of grain homogeneity. And the rock mechanical testing machine are used to measure the strength, hardness and elastic modulus. Basic on these three experiments, this paper finds the relationship between the CAI and physical and mechanical properties of rock. They are both the mesostructure and macroscopical properties of rock. According to the theory of tribology and wear, this paper finds the disc cutter wear mechanism during the machine and rock interaction process. The detail research results are as follows: (1) The size and form of the mineral grains constituting the rocks affect the abrasiveness of the rock. The rock abrasiveness CAI is a function of the product of the texture coefficient(TC) multiplying equivalent quarts content(Q%). (2) There is no obvious relationship between the rock abrasiveness CAI and the single macroscopical property of rock such as hardness, unconfined compressive strength, tensile strength and elastic modulus. But when taking the texture coefficient(TC) and the mineral composition in consideration, it shows that the rock abrasiveness CAI is relative to the combination of the rock mechanical property, the texture coefficient(TC) and the mineral composition. That is to say various factors which are from the mesostructure feature to the macroscopical property of rock control the rock abrasiveness. (3) The disc cutter penetrating into rock is a machine/rock interaction process. During this interaction, the wear of disc cutter is mainly coming from the abrasive of abrasiveness matters. First, the surface of the cutter ring is hunched, and then the material of the cutter ring is being wiped off during the iterative interaction. Second, the hard mineral in the rock and the muck will microcosmic cutting the surface material of cutter ring. (4) The disc cutters consumption is determined by the machine parameters and the geology condition. The machine parameters include the thrust and the revolution rate of the cutterhead. The geology condition include two aspects: the macroscopical properties which are the strength and/or hardness of rock, the presence of discontinuities in rock mass, the hardness, sharp, edge and size of the muck and so on. And the mesostructure features which are the hard mineral composition, the sharp and size of the grain of the rock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract With the Development of the West Regions, the contradiction between economy and geological hazards was once again brought to our face in the Loess Plateau where was ,and is liable to geological hazards for the unique conditions of geology, hydrogeology, geography and meteorology. The goal to realize harmonious development between human and the earth was always there, and landslide hazard zoning provided us an effective way against geological hazards and damage. In the background of the construction of 750KV transformer substation in TianShui, we summarized some theories, methods and development of landslide hazard zoning and discussed the application of information value model in landslide hazard zoning. A called “judgement matrix” like in AHP was introduced to the information value model to solve the key point of landslide hazard zoning — choice of factors and weight of each factor. GIS was applied in the landslide hazard zoning, with its comprehensive function on data management, spatial analysis and mapping. A zonation map of landslide hazard was worked out on MAPGIS aimed to have something of reference and instruction on the construction of the transformer substation. Key words: landslide; hazard zoning; information value model; GIS; judgement matrix

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, in order to image complex structures more accurately, the seismic migration methods has been developed from isotropic media to the anisotropic media. This dissertation develops a prestack time migration algorithm and application aspects for complex structures systematically. In transversely isotropic media with a vertical symmetry axis (VTI media), the dissertation starts from the theory that the prestack time migration is an approximation of the prestack depth migration, based on the one way wave equation and VTI time migration dispersion relation, by combining the stationary-phase theory gives a wave equation based VTI prestack time migration algorithm. Based on this algorithm, we can analytically obtain the travel time and amplitude expression in VTI media, as while conclude how the anisotropic parameter influence the time migration, and by analyzing the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, we can update the velocity model and estimate the anisotropic parameter model through the time migration. When anisotropic parameter is zero, this algorithm degenerates to the isotropic time migration algorithm naturally, so we can propose an isotopic processing procedure for imaging. This procedure may keep the main character of time migration such as high computational efficiency and velocity estimation through the migration, and, additionally, partially compensate the geometric divergence by adopting the deconvolution imaging condition of wave equation migration. Application of this algorithm to the complicated synthetic dataset and field data demonstrates the effectiveness of the approach. In the dissertation we also present an approach for estimating the velocity model and anisotropic parameter model. After analyzing the velocity and anisotropic parameter impaction on the time migration, and based on the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, through migration we can update the velocity model and estimate the anisotropic parameter model by combining the advantages of velocity analysis in isotropic media and anisotropic parameter estimation in VTI media. Testing on the synthetic and field data, demonstrates the method is effective and very steady. Massive synthetic dataset、2D sea dataset and 3D field datasets are used for VTI prestack time migration and compared to the stacked section after NMO and prestack isotropic time migration stacked section to demonstrate that VTI prestack time migration method in this paper can obtain better focusing and less positioning errors of complicated dip reflectors. When subsurface is more complex, primaries and multiples could not be separated in the Radon domain because they can no longer be described with simple functions (parabolic). We propose an attenuating multiple method in the image domain to resolve this problem. For a given velocity model,since time migration takes the complex structures wavefield propagation in to account, primaries and multiples have different offset-domain moveout discrepancies, then can be separated using techniques similar to the prior migration with Radon transform. Since every individual offset-domain common-reflection point gather incorporates complex 3D propagation effects, our method has the advantage of working with 3D data and complicated geology. Testing on synthetic and real data, we demonstrate the power of the method in discriminating between primaries and multiples after prestack time migration, and multiples can be attenuated in the image space considerably.