975 resultados para Genome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. Many recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. The current study incorporated gene network information into gene-based analysis of GWAS data for Crohn's disease (CD). The purpose was to develop statistical models to boost the power of identifying disease-associated genes and gene subnetworks by maximizing the use of existing biological knowledge from multiple sources. The results revealed that Markov random field (MRF) based mixture model incorporating direct neighborhood information from a single gene network is not efficient in identifying CD-related genes based on the GWAS data. The incorporation of solely direct neighborhood information might lead to the low efficiency of these models. Alternative MRF models looking beyond direct neighboring information are necessary to be developed in the future for the purpose of this study.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have successfully identified several genetic loci associated with inherited predisposition to primary biliary cirrhosis (PBC), the most common autoimmune disease of the liver. Pathway-based tests constitute a novel paradigm for GWAS analysis. By evaluating genetic variation across a biological pathway (gene set), these tests have the potential to determine the collective impact of variants with subtle effects that are individually too weak to be detected in traditional single variant GWAS analysis. To identify biological pathways associated with the risk of development of PBC, GWAS of PBC from Italy (449 cases and 940 controls) and Canada (530 cases and 398 controls) were independently analyzed. The linear combination test (LCT), a recently developed pathway-level statistical method was used for this analysis. For additional validation, pathways that were replicated at the P <0.05 level of significance in both GWAS on LCT analysis were also tested for association with PBC in each dataset using two complementary GWAS pathway approaches. The complementary approaches included a modification of the gene set enrichment analysis algorithm (i-GSEA4GWAS) and Fisher's exact test for pathway enrichment ratios. Twenty-five pathways were associated with PBC risk on LCT analysis in the Italian dataset at P<0.05, of which eight had an FDR<0.25. The top pathway in the Italian dataset was the TNF/stress related signaling pathway (p=7.38×10 -4, FDR=0.18). Twenty-six pathways were associated with PBC at the P<0.05 level using the LCT in the Canadian dataset with the regulation and function of ChREBP in liver pathway (p=5.68×10-4, FDR=0.285) emerging as the most significant pathway. Two pathways, phosphatidylinositol signaling system (Italian: p=0.016, FDR=0.436; Canadian: p=0.034, FDR=0.693) and hedgehog signaling (Italian: p=0.044, FDR=0.636; Canadian: p=0.041, FDR=0.693), were replicated at LCT P<0.05 in both datasets. Statistically significant association of both pathways with PBC genetic susceptibility was confirmed in the Italian dataset on i-GSEA4GWAS. Results for the phosphatidylinositol signaling system were also significant in both datasets on applying Fisher's exact test for pathway enrichment ratios. This study identified a combination of known and novel pathway-level associations with PBC risk. If functionally validated, the findings may yield fresh insights into the etiology of this complex autoimmune disease with possible preventive and therapeutic application.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventricular system is a critical component of the central nervous system (CNS) that is formed early in the developmental stages and remains functional through the lifetime. Changes in the ventricular system can be easily discerned via neuroimaging procedures and most of the time it reflects changes in the physiology of the CNS. In this study we attempted to identify specific genes associated with variation in ventricular volume in humans. Methods. We conducted a genome wide association (GWA) analysis of the volume of the lateral ventricles among 1605 individuals of European ancestry from two community based cohorts, the Genetics of Microangiopathic Brain Injury (GMBI; N=814) and Atherosclerosis Risk in Communities (ARIC; N=791). Significant findings from the analysis were tested for replication in both the cohorts and then meta-analyzed to get an estimate of overall significance. Results. In our GWA analyses, no single nucleotide polymorphism (SNP) reached a genome-wide significance of p<10−8. There were 25 SNPs in GMBI and 9 SNPs in ARIC that reached a threshold of p<10 −5. However, none of the top SNPs from each cohort were replicated in the other. In the meta-analysis, no SNP reached the genome-wide threshold of 5×10−8, but we identified five novel SNPs associated with variation in ventricular volume at the p<10 −5 level. Strongest association was for rs2112536 in an intergenic region on chromosome 5q33 (Pmeta= 8.46×10−7 ). The remaining four SNPs were located on chromosome 3q23 encompassing the gene for Calsyntenin-2 (CLSTN2). The SNPs with strongest association in this region were rs17338555 (Pmeta= 5.28×10 −6), rs9812091 (Pmeta= 5.89×10−6 ), rs9812283 (Pmeta= 5.97×10−6) and rs9833213 (Pmeta= 6.96×10−6). Conclusions. This GWA study of ventricular volumes in the community-based cohorts of European descent identifies potential locus on chromosomes 3 and 5. Further characterization of these loci may provide insights into pathophysiology of ventricular involvement in various neurological diseases.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomic era brought by recent advances in the next-generation sequencing technology makes the genome-wide scans of natural selection a reality. Currently, almost all the statistical tests and analytical methods for identifying genes under selection was performed on the individual gene basis. Although these methods have the power of identifying gene subject to strong selection, they have limited power in discovering genes targeted by moderate or weak selection forces, which are crucial for understanding the molecular mechanisms of complex phenotypes and diseases. Recent availability and rapid completeness of many gene network and protein-protein interaction databases accompanying the genomic era open the avenues of exploring the possibility of enhancing the power of discovering genes under natural selection. The aim of the thesis is to explore and develop normal mixture model based methods for leveraging gene network information to enhance the power of natural selection target gene discovery. The results show that the developed statistical method, which combines the posterior log odds of the standard normal mixture model and the Guilt-By-Association score of the gene network in a naïve Bayes framework, has the power to discover moderate/weak selection gene which bridges the genes under strong selection and it helps our understanding the biology under complex diseases and related natural selection phenotypes.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of expanded simple repeated sequences causing or associated with human disease has lead to a new area of research involved in the elucidation of how the expanded repeat causes disease and how the repeat becomes unstable. ^ To study the genetic basis of the (CTG)n repeat instability in the DMPK gene in myotonic dystrophy (DM1) patients, somatic cell hybrids were constructed between the lymphocytes of DM1 patients and a variety of Chinese hamster ovary (CHO) cell DNA repair gene deficient mutants. By using small pool PCR (SP-PCR), the instability of the (CTG)n can be quantitated for both the frequency and sizes of length change mutations. ^ Additional SP-PCR analysis on 2/11 subclones generated from this original hybrid showed a marked increase in large repeat deletions, ∼50%. A bimodal distribution of repeats was seen around the progenitor allele and at a large deleted product (within the normal range) with no intermediate products present. ^ To determine if the repair capacity of the CHO cell led to a mutator phenotype in the hamster and hybrid clones, SP-PCR was also done on 3 hamster microsatellites in a variety of hamster cell backgrounds. No variant alleles were seen in over 2500 genome equivalents screened. ^ Human-hamster hybrids have long been shown to be chromosomally unstable, yet information about the stability of repeated sequences was not known. To test if repeat instability was associated with either intact or non-intact human chromosomes, more than 300 microsatellite repeats on 13 human chromosomes (intact and non-intact) were analyzed in eight hybrid cells. No variants were seen between the hybrid and patient alleles in the hybrids. ^ To identify whether DM1 patients have a previously undetected level of genome wide instability or if the instability is truly locus specific, SP-PCR was done on 6 human microsatellites within the patient used to make the hybrid cells. No variants were seen in over 1000 genomes screened. ^ These studies show that the somatic cell hybrid approach is a genetically stable system that allows for the determination of factors that could lead to changes in microsatellite instability. It also shows that there is something inherent about the DM1 expanded (CTG)n repeat that it is solely targeted by, as of yet, and unknown mechanism that causes the repeat to be unstable. (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsatellite instability (MSI) is a hallmark of the mutator phenotype associated with Hereditary Non-Polyposis Colon Cancer (HNPCC). The MSI-High (MSI-H) HNPCC population has been well characterized, but the microsatellite low and stable (MSI-L/MSS) HNPCC population is much less understood. We hypothesize there are significant levels of MSI in HNPCC DNA classified as MSI-L/MSS, but no single variant allele makes up a sufficient population in the tumor DNA to be detected by standard analysis. Finding variants would suggest there is a mutator phenotype for the MSI-L/MSS HNPCC population that is distinct from the MSI-H HNPCC populations. This study quantified and compared MSI in HNPCC patients previously shown to be MSI-H, MSI-L/MSS and an MSI-H older, sporadic colorectal cancer patient. Small-pool Polymerase Chain Reactions (SP-PCRs) were conducted where the DNAs from each sample and controls are diluted into multiple pools, each containing approximately single genome equivalents. At least 100 alleles/sample were studied at six microsatellite loci. Mutant fragments were identified, quantified, and compared using Poisson statistics. Most of the variants were small deletions or insertions, with more mutants being deletions, as has been previously described in yeast and transgenic mice. SP-PCR, where most of the pools contained only 3 or less fragments, enabled identification of variants too infrequent to be detected by large pool PCR. Mutant fragments in positive control MSI-H tumor samples ranged from 0.26 to 0.68 in at least 4 of the 6 loci tested and were consistent with their MSI-H status. In the so called MSS tumors and constitutive tissues (normal colon tissue, and PBLs) of all the HNPCC patients, low, but significant levels of MSI were seen in at least two of the loci studied. This phenomenon was not seen in the sporadic MSI constitutive tissues nor the normal controls and suggests haploinsufficiency, gain-of-function, or a dominant/negative basis of the instability in HNPCC patients carrying germline mutations for tumor suppressor genes. A different frequency and spectrum of mutant fragments suggests a different genetic basis (other than a major mutation in MLH1 or MSH2) for disease in MSI-L and MSS HNPCC patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious Bovine Keratoconjunctivitis (IBK), known as pinkeye, is a common infectious disease affecting the eyes of cattle. It is characterized by excessive tearing, inflammation of the conjunctiva, and ulceration of the cornea. Although pinkeye is non-fatal, it has a marked economic impact on the cattle industry, due to the decreased performance of infected individuals. Genetic effects on the susceptibility of IBK have been studied and Hereford, Jersey, and Holstein breeds were found to be more susceptible to IBK than Bos Indicus breeds. The objectives of our study were: 1) to estimate genetic parameters of IBK scored in different categories by using genomic threshold model, and 2) to detect markers in linkage disequilibrium with quantitative tract loci (QTL) associated with IBK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial pep- tides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of microsatellite markers in large-scale genetic studies is limited by its low throughput and high cost and labor requirements. Here, we provide a panel of 45 multiplex PCRs for fast and cost-efficient genome-wide fluorescence-based microsatellite analysis in grapevine. The developed multiplex PCRs panel (with up to 15-plex) enables the scoring of 270 loci covering all the grapevine genome (9 to 20 loci/chromosome) using only 45 PCRs and sequencer runs. The 45 multiplex PCRs were validated using a diverse grapevine collection of 207 accessions, selected to represent most of the cultivated Vitis vinifera genetic diversity. Particular attention was paid to quality control throughout the whole process (assay replication, null allele detection, ease of scoring). Genetic diversity summary statistics and features of electrophoretic profiles for each studied marker are provided, as are the genotypes of 25 common cultivars that could be used as references in other studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-genome duplication approximately 108 years ago was proposed as an explanation for the many duplicated chromosomal regions in Saccharomyces cerevisiae. Here we have used computer simulations and analytic methods to estimate some parameters describing the evolution of the yeast genome after this duplication event. Computer simulation of a model in which 8% of the original genes were retained in duplicate after genome duplication, and 70–100 reciprocal translocations occurred between chromosomes, produced arrangements of duplicated chromosomal regions very similar to the map of real duplications in yeast. An analytical method produced an independent estimate of 84 map disruptions. These results imply that many smaller duplicated chromosomal regions exist in the yeast genome in addition to the 55 originally reported. We also examined the possibility of determining the original order of chromosomal blocks in the ancestral unduplicated genome, but this cannot be done without information from one or more additional species. If the genome sequence of one other species (such as Kluyveromyces lactis) were known it should be possible to identify 150–200 paired regions covering the whole yeast genome and to reconstruct approximately two-thirds of the original order of blocks of genes in yeast. Rates of interchromosome translocation in yeast and mammals appear similar despite their very different rates of homologous recombination per kilobase.