974 resultados para Generator matrices
Resumo:
Towpregs based on different fibres and thermoplastic matrices were processed for highly demanding and more commercial applications by different composite processing technologies. In the technologies used, compression moulding and pultrusion, the final composite pr ocessing parameters were studied in order to obtain composites with adequate properties at industrial compatible production rates. The produced towpregs were tested to verify its polymer content and degree of impregnation. The obtained results have shown t hat the coating line enabled to produce, with efficiency and industrial scale speed rates, thermoplastic matrix towpregs that may be used to manufacture composites for advanced and larger volume commercial markets.
Resumo:
This paper proposes a multifunctional architecture to implement field-programmable gate array (FPGA) controllers for power converters and presents a prototype for a pulsed power generator based on a solid-state Marx topology. The massively parallel nature of reconfigurable hardware platforms provides very high processing power and fast response times allowing the implementation of many subsystems in the same device. The prototype includes the controller, a failure detection system, an interface with a safety/emergency subsystem, a graphical user interface, and a virtual oscilloscope to visualize the generated pulse waveforms, using a single FPGA. The proposed architecture employs a modular design that can be easily adapted to other power converter topologies.
Resumo:
This paper describes a modular solid-state switching cell derived from the Marx generator concept to be used in topologies for generating multilevel unipolar and bipolar high-voltage (HV) pulses into resistive loads. The switching modular cell comprises two ON/OFF semiconductors, a diode, and a capacitor. This cell can be stacked, being the capacitors charged in series and their voltages balanced in parallel. To balance each capacitor voltage without needing any parameter measurement, a vector decision diode algorithm is used in each cell to drive the two switches. Simulation and experimental results, for generating multilevel unipolar and bipolar HV pulses into resistive loads are presented.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
A mathematical model that simulates the operation of a solid-state bipolar Marx modulator topology, including the influence of parasitic capacitances is presented and discussed as a tool to analyze the circuit behavior and to assist the design engineer to select the semiconductor components and to enhance the operating performance. Simulations show good agreement with experimental results, considering a four stage circuit assembled with 1200 V isolated gate bipolar transistors and diodes, operating at 1000 V dc input voltage and 1-kHz frequency, giving 4 kV and 10-mu s output pulses into several resistive loads. Results show that parasitic capacitances between Marx cells to ground can significantly load the solid-state switches, adding new operating circuit conditions.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Matemática, Estatística, pela Universidade Nova de Lisboa, faculdade de Ciências e Tecnologia
Resumo:
In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Locomotion has been a major research issue in the last few years. Many models for the locomotion rhythms of quadrupeds, hexapods, bipeds and other animals have been proposed. This study has also been extended to the control of rhythmic movements of adaptive legged robots. In this paper, we consider a fractional version of a central pattern generator (CPG) model for locomotion in bipeds. A fractional derivative D α f(x), with α non-integer, is a generalization of the concept of an integer derivative, where α=1. The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a network of four coupled identical oscillators which has dihedral symmetry. We study parameter regions where periodic solutions, identified with legs’ rhythms in bipeds, occur, for 0<α≤1. We find that the amplitude and the period of the periodic solutions, identified with biped rhythms, increase as α varies from near 0 to values close to unity.
Resumo:
We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.
Resumo:
Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
European Transactions on Telecommunications, vol. 18
Resumo:
To study luminescence, reflectance, and color stability of dental composites and ceramics. Materials and Methods: IPS e.max, IPS Classic, Gradia, and Sinfony materials were tested, both unpolished (as-cast) and polished specimens. Coffee, tea, red wine, and distilled water (control) were used as staining drinks. Disk-shaped specimens were soaked in the staining drinks for up to 5 days. Color was measured by a colorimeter. Fluorescence was recorded using a spectrofluorometer, in the front-face geometry. Time-resolved fluorescence spectra were recorded using a laser nanosecond spectrofluorometer. Results: The exposure of the examined dental materials to staining drinks caused changes in color of the composites and ceramics, with the polished specimens exhibiting significantly lower color changes as compared to unpolished specimens. Composites exhibited lower color stability as compared to ceramic materials. Water also caused perceptible color changes in most materials. The materials tested demonstrated significantly different initial luminescence intensities. Upon exposure to staining drinks, luminescence became weaker by up to 40%, dependent on the drink and the material. Time-resolved luminescence spectra exhibited some red shift of the emission band at longer times, with the lifetimes in the range of tens of nanoseconds. Conclusions: Unpolished specimens with a more developed surface have lower color stability. Specimens stored in water develop some changes in their visual appearance. The presently proposed methods are effective in evaluating the luminescence of dental materials. Luminescence needs to be tested in addition to color, as the two characteristics are uncorrelated. It is important to further improve the color and luminescence stability of dental materials.