982 resultados para Gamma uminobutyric acid
Resumo:
Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.
Resumo:
Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.
Resumo:
Glioblastoma patients undergoing treatment with surgery followed by radiation and temozolomide chemotherapy often develop a state of immunosuppression and are at risk for opportunistic infections and reactivation of hepatitis and herpes viruses. We report the case of a 48-year-old glioblastoma patient who developed acute cholestatic hepatitis with hepatic failure during adjuvant treatment with temozolomide and the integrin inhibitor cilengitide. A viral hepatitis was excluded and valproic acid treatment was stopped. Upon normalisation of the liver tests, temozolomide treatment was resumed without perturbation of the liver tests. Valproic acid related idiosyncratic drug induced hepatotoxicity should be considered as a differential diagnosis in glioblastoma patients undergoing adjuvant therapy.
Resumo:
Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
Experimental leishmaniasis offers a well characterized model of T helper type 1 cell (Th1)-mediated control of infection by an intracellular organism. Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination. The early CD4(+) T cell response in these mice is oligoclonal and reflects the expansion of Vbeta4/ Valpha8-bearing T cells in response to a single epitope from the parasite Leishmania homologue of mammalian RACK1 (LACK) antigen. Interleukin 4 (IL-4) generated by these cells is believed to direct the subsequent Th2 response. We used T cells from T cell receptor-transgenic mice expressing such a Vbeta4/Valpha8 receptor to characterize altered peptide ligands with similar affinity for I-Ad. Such altered ligands failed to activate IL-4 production from transgenic LACK-specific T cells or following injection into BALB/c mice. Pretreatment of susceptible mice with altered peptide ligands substantially altered the course of subsequent infection. The ability to confer a healer phenotype on otherwise susceptible mice using altered peptides that differed by a single amino acid suggests limited diversity in the endogenous T cell repertoire recognizing this antigen.
Resumo:
Purpose: To evaluate the safety-efficacy of Gamma Knife surgery (GKS) as a second treatment for classical trigeminal neuralgia (CTN), and the influence of prior microvascular decompression (MVD). Methods: Between July 1992 and November 2010, 737 patients have been operated with GKRS for ITN and prospectively evaluated in Timone University Hospital in Marseille, France. Among these, 54 patients had a previous history of MVD. Radiosurgery using a Gamma Knife (model B or C or Perfexion) was performed on the basis of on both MR and CT targeting. A single 4 mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.6 mm (range 3.9-11.9) anteriorly to the emergence of the nerve (retrogasserian target). A median maximum dose of 85 Gy (range 70-90) was delivered. Here, the 45 patients with previous MVD and a follow-up longer than one year are evaluated (the patients with megadolichobasilar artery compression and multiple sclerosis were excluded). Results: The median age in this series was 56.75 years (range 28.09-82.39). The median follow-up period was 39.48 months (range 14.10-144.65). All the patients had a past history of surgery, with at least one previous failed MVD, but also radiofrequency lesion (RFL) in 16 patients (35.6%), balloon microcompression in 7 (15.6%) and glycerol rhizotomy in 1 (2.2%). Thirty-five patients (77.8%) were initially pain free after GKS within a median time of 14 days (range 0, 180). Patients from this group had less probability of being pain free compared to our global population of essential trigeminal neuralgia without previous MVD history (p=0.010, hazard ratio of 0.64). Their probability of remaining pain free at 3, 5, 7 and 10 years was 66.5%, 59.1%, 59.1% and 44.3%, respectively. Twelve patients (34.3%) initially pain free experienced a recurrence with a median delay of 31.21 months (range 3.40-89.93). The hypoesthesia actuarial rate at 1 year was 9.1% and remained stable till 12 years with a median delay of onset of 8 months (range 8-8). Conclusions: Retrogasserian GKS proofed to be safe and effective on the long-term basis even after failed previous MVD. Even if the initial result of pain free was only 77.8%, the toxicity was low with only 9.1% hypoesthesia. No patient reported a bothersome hypoesthesia. The probability of maintaining pain relief in the long-term was of 44.3% at 10 years.
Resumo:
Commitment of the alpha beta and gamma delta T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCR gamma delta-transgenic or TCR beta knockout mice, both of which are unable to generate TCR alpha beta-positive T cells, develop phenotypically alpha beta-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCR beta protein, the gamma delta TCR can promote the development of alpha beta-like thymocytes, which, however, do not expand significantly and do not mature into gamma delta T cells. These results show that commitment to the alpha beta lineage can be determined independently of the isotype of the TCR, and suggest that alpha beta versus gamma delta T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCR gamma and delta gene rearrangements on alpha beta T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.
Resumo:
Rosickyite, the natural monoclinic gamma -form of sulphur, exists in only a few localities around the globe. In the old asphalt mine at La Presta, Neuchatel. Switzerland, rosickyite occurs locally as small, but very well formed crystals suitable for crystallographic studies. It grows as an alteration product of pyrite-rich asphalt. Rosickyite from La Presta mine is pure molecular sulphur, as revealed by gas chromatography-mass spectrometry. The X-ray powder diffraction data of La Presta rosickyite does not match the one previously published for this species. Therefore, a single crystal study was undertaken and a new indexed X-ray powder diffraction diagram for natural rosickyite is proposed.
Resumo:
The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
Resumo:
Abstract Objectives: This review will briefly present the epidemiology and risk factors of gout, with a focus on recent advances. Methods: Key papers for inclusion were identified by a PubMed search, and articles were selected according to their relevance for the topic, according to authors' judgment. Results and conclusions: Gout therapy has remained very much unchanged for the last 50 years, but recently we have seen the approval of another gout treatment: the xanthine oxidase inhibitor febuxostat, and several new drugs are now in the late stages of clinical testing. Together with our enhanced level of understanding of the pathophysiology of the inflammatory process involved, we are entering a new era for the treatment of gout.
Resumo:
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.