980 resultados para GROWN GAAS
Resumo:
An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a) mtabolic pathways, b) detection times for various inoculum sizes, c) effect of filtration on reproducibility of results, d) influence of stress environment e) minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f) generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C) acetate, (U-14C) glycerol, (1-14C) palmitic acid, 1-14C) lauric acid, (U-14C) L-malic acid, (U-14C) D-glucose, and (U-14C) D-glucose, but not (1-14C) L-glucose, (U-14C) glycine, or (U-14C) pyruvate to 14CO2. By using either 14C-for-mate, (1-14C) palmitic acid, or (1-14C) lauric acid, 10(7) organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.
Resumo:
Em consequência da elevada permanência das pessoas em espaços interiores de edifícios, surge actualmente uma maior preocupação com o conforto térmico e qualidade do ar no seu interior. Apesar da grande evolução tecnológica dos sistemas de conservação de energia térmica e controle da qualidade do ar interior (QAI) na construção, os edifícios existentes acabam por não acompanhar essa evolução, apresentando um comportamento térmico e higrométrico que por vezes podem comprometer quer o conforto, quer a saúde e actividades dos seus utilizadores. Nos estabelecimentos de ensino, o comportamento termo-higrométrico assume um papel importante face à permanência diária de um grande número de crianças e jovens no seu interior. Com este estudo pretende-se caracterizar a qualidade do ambiente no interior de oito escolas, através de uma análise aos principais parâmetros de natureza higrotérmica de oito salas de aulas, tais como: a temperatura (ambiente e superficial), a humidade relativa (do ambiente e da superfície da envolvente exterior opaca), bem como o nível de escoamento do ar interior. Neste trabalho são apresentados os resultados das medições efectuadas em oito salas de aula que permitiram a comparação de características termo-higrométricas entre as respectivas escolas. É ainda apresentada a estimativa do nível de conforto térmico face às condições ambientais registadas, bem como a análise do risco de ocorrência de condensações interiores.
Resumo:
Engineering education practices have evolved not only due to the natural changes in the contents of the curricula and skills but also, and more recently, due to the requirements imposed by the Bologna revision process. In addition, industry is becoming more demanding, as society is becoming more and more aware of the global needs and consequences of industrial practices. Under this scope, higher education needs not only to follow but also to lead these trends. Therefore, the School of Engineering of the Polytechnic Institute of Porto (ISEP), a Global Reporting Initiative (GRI) training partner in Portugal, prepared and presented its Sustainability Action Plan (PASUS), with the main objective of creating a new kind of engineers, with Sustainable Development at the core of their graduation and MsC degrees. In this paper, the main strategies and activities of the referred plan along with the strategic approach, which guided its development and implementation, will be presented in detail. Additionally, a reflection about the above mentioned bridge between concept and application will be established and justified, in the framework of the action plan. Although in most of the situations, there was no prior discussion or specific request, many of the graduation and post-graduation programmes offered by ISEP already include courses that attend to PASUS philosophy. As a consequence, the number of Master thesis, Graduation projects and R&D projects that address sustainability problems has grown substantially, a proof that for ISEP community, sustainability really matters!
Resumo:
Paracoccidioidomycosis (South American blastomycosis) is a systemic disease, strikingly more frequent in males, caused by the dimorphic fungus Paracoccidioides brasiliensis. A radiometric assay system has been applied to study the metabolic activity and the effect of drugs on this fungus "in vitro". The Y form of the yeast, grown in liquid Sabouraud medium was inoculated into sterile reaction vials containing the 6B aerobic medium along with 2.0 μCi of 14C-substrates. Control vials, prepared in the same way, contained autoclaved fungi. To study the effects of amphotericin B (AB) (0.1 and 10 μg/ml) and diethylstilbestrol (DSB) (1.0, 5.0 and 10 μg/ml) extra controls with live fungi and no drug were used. All vials were incubated at 35°C and metabolism measured daily with a Bactec instrument. 14CO2 production by P. brasiliensis was slow and could be followed for as long as 50 days. AB at 10mg/ml and DSB at 5 μg/ml inhibited the metabolism and had a cidal effect on this fungus. The results with DSB might explain the low incidence of the disease in females. This technique shows promise for studying metabolic pathways, investi gating more convenient 14C-substrates to expedite radiometric detection and for monitoring the effects of other drugs and factors on the metabolism of P. brasiliensis "in vitro".
Resumo:
Leishmania braziliensis braziliensis(MHOM/BR/75/M2903) was grown in Schneider's Drosophila medium. In one set of experiments promastigotes were already adapted to the medium by means of serial passages whereas in the second cells were grown in a biphasic medium and transfered to the liquid. Growth was more abundant for culture medium adapted cells; degenerate cells in small numbers as well as dead ones were present from day 5 for promastigotes adapted to liquid medium and from day 3 for newly adapted cells. Synthesis of surface antigens differed according to length of cell culture as assessed by the titer of five mucocutaneous leishmaniasis sera on subsequent days. Five days of culture for cells already adapted to the culture medium and 3 days for newly adapted ones were judged to be the best for the preparation of immunofluorescence antigens.
Resumo:
Trophozoites from cultures of Entamoeba histolytica strains isolated and grown axenically in Brazil (ICB-CSP, ICB-462 and ICB-32) were used for immune sera production and for characterization of their antigens by using electrophoretic and glycoproteic profiles, in parallel with a standard strain isolated and kept under axenic conditions in USA (HK-9). Hyperimmune sera, presenting high antibody titers with homologous and heterologous antigens, were obtained. The four strains in study revealed similar and complex electrophoretic and glycoproteic profiles showing polypep-tides with molecular weights ranging from 200 to less than 29 kDa. No significant differences were detected between the pathogenic and non-pathogenic strains.
Resumo:
International Biodeterioration & Biodegradation,xxx (2009) 1–8
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Cubic cobalt nitride films were grown onto different single crystalline substrates Al2O3 (0 0 0 1) and (1 1 View the MathML source 0), MgO (1 0 0) and (1 1 0) and TiO2 (1 0 0) and (1 1 0). The films display low atomic densities compared with the bulk material, are ferromagnetic and have metallic electrical conductivity. X-ray diffraction and X-ray absorption fine structure confirm the cubic structure of the films and with RBS results indicate that samples are not homogeneous at the microscopic scale, coexisting Co4+xN nitride with nitrogen rich regions. The magnetization of the films decreases with increase of the nitrogen content, variation that is shown to be due to the decrease of the cobalt density, and not to a decrease of the magnetic moment per cobalt ion. The films are crystalline with a nitrogen deficient stoichiometry and epitaxial with orientation determined by the substrate.
Resumo:
The synthesis of nanocomposite materials combining titanate nanofibers (TNF) with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work. The TNF were produced via hydrothermal synthesis and sensitized with the semiconductor nanoparticles, through a single-source precursor decomposition method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF's surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts. The samples' photocatalytic performance was first evaluated through the production of the hydroxyl radical using terephthalic acid as probe molecule. All the tested samples show photocatalytic ability for the production of this oxidizing species. Afterwards, the samples were investigated for the removal of methylene blue. The nanocomposite materials with best adsorption ability were the ZnS/TNF and Bi2S3ZnS/TNF. The dye removal was systematically studied, and the most promising results were obtained considering a sequential combination of an adsorption-photocatalytic degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and photocatalyst material. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.
Resumo:
In order to improve the diagnosis of human leptospirosis, we standardized the dot-ELISA for the search of specific IgM antibodies in saliva. Saliva and serum samples were collected simultaneously from 20 patients with the icterohemorrhagic form of the disease, from 10 patients with other pathologies and from 5 negative controls. Leptospires of serovars icterohaemorrhagiae, canicola, hebdomadis, brasiliensis and cynopteri grown in EMJH medium and mixed together in equal volumes, were used as antigen at individual protein concentration of 0.2 µg/µl. In the solid phase of the test we used polyester fabric impregnated with N-methylolacrylamide resin. The antigen volume for each test was 1µl, the saliva volume was 8 µl, and the volume of peroxidase-labelled anti-human IgM conjugate was 30 µl. A visual reading was taken after development in freshly prepared chromogen solution. In contrast to the classic nitrocellulose membrane support, the fabric support is easy to obtain and to handle. Saliva can be collected directly onto the support, a fact that facilitates the method and reduces the expenses and risks related to blood processing.
Resumo:
Trabalho de Projeto
Resumo:
A racionalização do consumo de energia elétrica é um tema que assume uma importância crescente nos dias de hoje. O elevado consumo de energia, principalmente a nível comercial/industrial, tem motivado o aparecimento de questões políticas, económico-sociais e ambientais que visam a sensibilização dos consumidores para a gestão eficiente dos seus recursos. Neste sentido, as empresas e instituições têm demonstrado interesse em encontrar soluções de gestão nas suas instalações elétricas que permitam a monitorização de indicadores e a previsão de falhas cuja ocorrência acarreta elevados custos de reparação/substituição, de paragem de produção, entre outros. O estudo aqui apresentado surge no âmbito de um projeto académico, cuja finalidade se prende com a implementação de um sistema de monitorização da qualidade e consumo de energia elétrica no Instituto Superior de Engenharia do Porto (ISEP). Baseado numa rede de dispositivos analisadores de parâmetros de energia elétrica, estes equipamentos de medição dispõem de software próprio, o GridVis, que permite o acesso remoto, através de uma rede Ethernet, aos parâmetros de energia (grandezas físicas elétricas). O sistema desenvolvido é capaz de identificar parâmetros de consumo de energia anómalos e emitir alertas, pré-programados em linguagem C++ e diagrama de blocos. Permite, por exemplo, detetar um consumo instantâneo excessivo de energia e alertar a sua ocorrência. As páginas de acesso aos parâmetros medidos por cada dispositivo são acessíveis através de uma interface gráfica desenvolvida em Adobe Flash que inclui, de uma forma simples e organizada, a informação relativa à distribuição dos dispositivos de medição. Num contexto de expansão deste projeto para outros edifícios do ISEP, a solução desenvolvida encontra-se preparada para ser adaptada em qualquer local, desde que reúna certos requisitos.