903 resultados para GLANCING ANGLE DEPOSITION
Resumo:
Characteristics of the impacts su!ered by the fruit on a transfer point of an experimental fruit packing line were analysed. The transfer is made up by two transporting belts at di!erent heights forming an angle of 903. These transfer points are very common in fruit packing lines, in which fruits receive two impacts: the "rst onto the belt base and the second into the lateral plate. Diferent tests were carried out to study the e!ect of transfer height, velocity, belt structure and padding on the acceleration values recorded by an instrumental sphere (IS 100). Results showed that transfer height and belt structure a!ect mainly impact values on the belt base, and padding a!ects mainly impact values registered for lateral contact. The elect of belt velocity in both impacts is less important when compared to the rest of the variables. Additionally, two powered transfer decelerators were tested at the same point with the aim of decreasing impacts su!ered by the fruit. Comparing impacts registered using these decelerators to those analysed in the first part of the study without decelerators, a high reduction of the impact values was observed.
Resumo:
Cost and energy consumption related to obtaining polysilicon impact significantly on the total photovoltaic module cost and its energy payback time. Process simplifications can be performed, leading to cost reductions. Nowadays, among several approaches currently pursued to produce the so called Solar Grade Silicon, the chemical route, named Siemens process, is the dominant one. At the Instituto de Energía Solar research on this topic is focused on the chemical route, in particular on the polysilicon deposition step by chemical vapor deposition (CVD) from Trichlorosilane through a laboratory prototype. Valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained from our experiments. A particular feature of our system is the inclusion of a mass spectrometer. The present work comprises spectra characterization of the polysilicon deposition chemical reaction, temperature and inlet gas mixture composition influence on the deposition rate and analysis of polysilicon deposition conditions for the ?pop-corn' phenomenon to appear, based on experimental experience (Actas de la Special Issue: E-MRS 2012 Spring Meeting ? Symposium A
Resumo:
The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques.