959 resultados para GENETIC CONSERVATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Hepatitis C virus (HCV) induces chronic infection in 50% to 80% of infected persons; approximately 50% of these do not respond to therapy. We performed a genome-wide association study to screen for host genetic determinants of HCV persistence and response to therapy. METHODS: The analysis included 1362 individuals: 1015 with chronic hepatitis C and 347 who spontaneously cleared the virus (448 were coinfected with human immunodeficiency virus [HIV]). Responses to pegylated interferon alfa and ribavirin were assessed in 465 individuals. Associations between more than 500,000 single nucleotide polymorphisms (SNPs) and outcomes were assessed by multivariate logistic regression. RESULTS: Chronic hepatitis C was associated with SNPs in the IL28B locus, which encodes the antiviral cytokine interferon lambda. The rs8099917 minor allele was associated with progression to chronic HCV infection (odds ratio [OR], 2.31; 95% confidence interval [CI], 1.74-3.06; P = 6.07 x 10(-9)). The association was observed in HCV mono-infected (OR, 2.49; 95% CI, 1.64-3.79; P = 1.96 x 10(-5)) and HCV/HIV coinfected individuals (OR, 2.16; 95% CI, 1.47-3.18; P = 8.24 x 10(-5)). rs8099917 was also associated with failure to respond to therapy (OR, 5.19; 95% CI, 2.90-9.30; P = 3.11 x 10(-8)), with the strongest effects in patients with HCV genotype 1 or 4. This risk allele was identified in 24% of individuals with spontaneous HCV clearance, 32% of chronically infected patients who responded to therapy, and 58% who did not respond (P = 3.2 x 10(-10)). Resequencing of IL28B identified distinct haplotypes that were associated with the clinical phenotype. CONCLUSIONS: The association of the IL28B locus with natural and treatment-associated control of HCV indicates the importance of innate immunity and interferon lambda in the pathogenesis of HCV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A remarkable social polymorphism is controlled by a single Mendelian factor in the fire ant Solenopsis invicta. A genomic element marked by the gene Gp-9 determines whether workers tolerate one or many fertile queens in their colony. Gp-9 was recently shown to be part of a supergene with two nonrecombining variants, SB and Sb. SB/SB and SB/Sb queens differ in how they initiate new colonies, and in many physiological traits, for example odour and maturation rate. To understand how a single genetic element can affect all these traits, we used a microarray to compare gene expression patterns between SB/SB and SB/Sb queens of three different age classes: 1-day-old unmated queens, 11-day-old unmated queens and mated, fully reproductive queens collected from mature field colonies. The number of genes that were differentially expressed between SB/SB and SB/Sb queens of the same age class was smallest in 1-day-old queens, maximal in 11-day-old queens and intermediate in reproductive queens. Gene ontology analysis showed that SB/SB queens upregulate reproductive genes faster than SB/Sb queens. For all age classes, genes inside the supergene were overrepresented among the differentially expressed genes. Consistent with the hypothesized greater number of transposons in the Sb supergene, 13 transposon genes were upregulated in SB/Sb queens. Viral genes were also upregulated in SB/Sb mature queens, consistent with the known greater parasite load in colonies headed by SB/Sb queens compared with colonies headed by SB/SB queens. Eighteen differentially expressed genes between reproductive queens were involved in chemical signalling. Our results suggest that many genes in the supergene are involved in regulating social organization and queen phenotypes in fire ants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea: mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified C7orf11, which localizes to the nucleus and is expressed in fetal hair follicles, as the first disease gene for nonphotosensitive trichothiodystrophy (TTD). C7orf11 maps to chromosome 7p14, and the disease locus has been designated "TTDN1" (TTD nonphotosensitive 1). Mutations were found in patients with Amish brittle-hair syndrome and in other nonphotosensititive TTD cases with mental retardation and decreased fertility but not in patients with Sabinas syndrome or Pollitt syndrome. Therefore, genetic heterogeneity in nonphotosensitive TTD is a feature similar to that observed in photosensitive TTD, which is caused by mutations in transcription factor II H (TFIIH) subunit genes. Comparative immunofluorescence analysis, however, suggests that C7orf11 does not influence TFIIH directly. Given the absence of cutaneous photosensitivity in the patients with C7orf11 mutations, together with the protein's nuclear localization, C7orf11 may be involved in transcription but not DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.