969 resultados para G-matrix
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.
Resumo:
We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 degrees C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
Zebrafish (Danio rerio) embryos are transparent and advantageous for studying early developmental changes due to ex utero development, making them an appropriate model for studying gene expression changes as a result of molecular targeting. Zebrafish embryos were injected with a previously reported G-quadruplex selective ligand, and the phenotypic changes were recorded. We report marked discrepancies in the development of intersegmental vessels. In silico analysis determined that the putative G-quadruplex motif occur in the upstream promoter region of the Cdh5 (N-cadherin) gene. A real-time polymerase chain reaction-based investigation indicated that in zebrafish, CDH-2 (ZN-cad) was significantly downregulated in the ligand-treated embryos. Biophysical characterization of the interaction of the ligand with the G-quadruplex motif found in this promoter yielded strong binding and stabilization of the G-quadruplex with this ligand. Hence, we report for the first time the phenotypic impact of G-quadruplex targeting with a ligand in a vertebrate organism. This study has unveiled not only G-quadruplex targeting in non-human animal species but also the potential that G-quadruplexes can provide a ready tool for understanding the phenotypic effects of targeting certain important genes involved in differentiation and developmental processes in a living eukaryotic organism.
Resumo:
The two-pion contribution from low energies to the muon magnetic moment anomaly, although small, has a large relative uncertainty since in this region the experimental data on the cross sections are neither sufficient nor precise enough. It is therefore of interest to see whether the precision can be improved by means of additional theoretical information on the pion electromagnetic form factor, which controls the leading-order contribution. In the present paper, we address this problem by exploiting analyticity and unitarity of the form factor in a parametrization-free approach that uses the phase in the elastic region, known with high precision from the Fermi-Watson theorem and Roy equations for pi pi elastic scattering as input. The formalism also includes experimental measurements on the modulus in the region 0.65-0.70 GeV, taken from the most recent e(+)e(-) ->pi(+)pi(-) experiments, and recent measurements of the form factor on the spacelike axis. By combining the results obtained with inputs from CMD2, SND, BABAR, and KLOE, we make the predictions a(mu)(pi pi,LO)2m(pi), 0.30 GeV] = (0.553 +/- 0.004) x 10(-10) and a(mu)(pi pi,LO)0.30 GeV; 0.63 GeV] = (133.083 +/- 0.837) x 10(-10). These are consistent with the other recent determinations and have slightly smaller errors.
Resumo:
A detailed diffusion study was carried out on Cu(Ga) and Cu(Si) solid solutions in order to assess the role of different factors in the behaviour of the diffusing components. The faster diffusing species in the two systems, interdiffusion, intrinsic and impurity diffusion coefficients, are determined to facilitate the discussion. It was found that Cu was more mobile in the Cu-Si system, whereas Ga was the faster diffusing species in the Cu-Ga system. In both systems, the interdiffusion coefficients increased with increasing amount of solute (e.g. Si or Ga) in the matrix (Cu). Impurity diffusion coefficients for Si and Ga in Cu, found out by extrapolating interdiffusion coefficient data to zero composition of the solute, were both higher than the Cu tracer diffusion coefficient. These observed trends in diffusion behaviour could be rationalized by considering: (i) formation energies and concentration of vacancies, (ii) elastic moduli (indicating bond strengths) of the elements and (iii) the interaction parameters and the related thermodynamic factors. In summary, we have shown here that all the factors introduced in this paper should be considered simultaneously to understand interdiffusion in solid solutions. Otherwise, some of the aspects may look unusual or even impossible to explain.
Resumo:
Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The present article describes a working or combined calibration curve in laser-induced breakdown spectroscopic analysis, which is the cumulative result of the calibration curves obtained from neutral and singly ionized atomic emission spectral lines. This working calibration curve reduces the effect of change in matrix between different zone soils and certified soil samples because it includes both the species' (neutral and singly ionized) concentration of the element of interest. The limit of detection using a working calibration curve is found better as compared to its constituent calibration curves (i.e., individual calibration curves). The quantitative results obtained using the working calibration curve is in better agreement with the result of inductively coupled plasma-atomic emission spectroscopy as compared to the result obtained using its constituent calibration curves.
Resumo:
We incorporated tin oxide nanostructures into the graphene nanosheet matrix and observed that the phase of tin oxide varies with the morphology. The highest discharge capacity and coulumbic efficiency were obtained for SnO phase of nanoplates morphology. Platelet morphology of tin oxide shows more reversible capacity than the nanoparticle (SnO2 phase) tin oxide. The first discharge capacity obtained for SnO@GNS is 1393 and 950 mAh/g for SnO2@GNS electrode at a current density of 23 mu A/cm(2). A stable capacity of about 1022 and 715 mAh/g was achieved at a current rate of 23 mu A/cm(2) after 40 cycles for SnO@GNS and SnO2@GNS anodes, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.
Resumo:
We demonstrate extremely narrow resonances for polarization rotation in an atomic vapor. The resonances are created using a strong control laser on the same transition, which polarizes the atoms due to optical pumping among the magnetic sublevels. As the power in the control laser is increased, successively higher-order nested polarization-rotation resonances are created, with progressively narrower linewidths. We study these resonances in the D-2 line of Rb in a room temperature vapor cell, and demonstrate a width of 0.14 G for the third-order rotation. The physical basis for the observed resonances is that optical pumping results in a simplified. AV-type level structure with differential dressing of the levels by the control laser, which is why the control power has to be sufficiently high for each resonance to appear. This explanation is borne out by a density-matrix analysis of the system. The dispersive lineshape and subnatural width of the resonance lends itself naturally to applications such as laser locking to atomic transitions and precision measurements. Copyright (c) EPLA, 2014
Resumo:
G-Quadruplexes occupy important regulatory regions in the genome. DNA G-quadruplexes in the promoter regions and RNA quadruplexes in the UTRs (untranslated regions) have been individually studied and variously implicated at different regulatory levels of gene expression. However, the formation of G-quadruplexes in the sense and antisense strands and their corresponding roles in gene regulation have not been studied in much detail. In the present study, we have elucidated the effect of strand asymmetry in this context. Using biophysical methods, we have demonstrated the formation of stable G-quadruplex structure in vitro using CD and UV melting. Additionally, ITC was employed to demonstrate that a previously reported selective G-quadruplex ligand was able to bind and stabilize the G-quadruplex in the present sequence. Further, we have shown using reporter constructs that although the DNA G-quadruplex in either strand can reduce translation efficiency, transcriptional regulation differs when G-quadruplex is present in the sense or antisense strand. We demonstrate that the G-quadruplex motif in the antisense strand substantially inhibits transcription, while when in the sense strand, it does not affect transcription, although it does ultimately reduce translation. Further, it is also shown that the G-quadruplex stabilizing ligand can enhance this asymmetric transcription regulation as a result of the increased stabilization of the G-quadruplex.
Resumo:
Polymer nanocomposites constitute an important class of materials whose properties depend on the state of dispersion of the nanoparticles in the polymer matrix. Here we report the first observations of confinement-induced enhancement of dispersion in nanoparticle-polymer blend films. Systematic variation in the dispersion of nanoparticles with confinement for various compositions and matrix polymer chain dimensions has been observed. For fixed composition, strong reduction in glass transition temperature, T-g, is observed with decreasing blend-film thickness. The enhanced dispersion occurs without altering the polymer-particle interactions and seems to be driven by enhanced matrix-chain orientation propensity and a tendency to minimize the density gradients within the matrix. This implies the existence of two different mechanisms in polymer nanocomposites, which determines their state of dispersion and glass transition.
Resumo:
In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.