985 resultados para Four-helix bundle
Resumo:
The aroma volatiles of four cultivars of muskmelon were examined using solid phase microextraction, followed by gas chromatography-mass spectrometry. The melons studied were Galia, from the reticulatus group, cantaloupe, from the cantaloupensis group, and honeydew and Piel de Sapo, from the inodorus group. Quantitative and qualitative differences existed between all four cultivars. Possible pathways for the formation of volatile compounds in melons are discussed.
Resumo:
Grouping by luminance and shape similarity has previously been demonstrated in neonates and at 4 months, respectively. By contrast, grouping by proximity has hitherto not been investigated in infancy. This is also the first study to chart the developmental emergence of perceptual grouping longitudinally. Sixty-one infants were presented with a matrix of local stimuli grouped horizontally or vertically by luminance, shape or proximity at 2, 4, and 6 months. Infants were exposed to each set of stimuli for three presentation durations. Grouping was demonstrated for luminance similarity at the earliest testing age, 2 months, by shape similarity at 4 months, but was not observed for grouping by proximity. Grouping by shape similarity showed a distinctive pattern of grouping ability across exposure durations, which reflected familiarity preferences followed by novelty preferences. This remained stable across age. No link was found between the emergence of perceptual grouping ability and the exposure duration required to elicit grouping. We conclude by stressing the importance of longitudinal studies of infant development in furthering our understanding of human cognition, rather than relying on assumptions from the adult endstate.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
Manipulation of an object by a multi-fingered robot hand requires task planning which involves computation of joint space vectors and fingertip forces. To implement a task as fast as possible, computations have to be carried out in minimum time. The state of the art in manipulation by multi-fingered robot hand designs has shown the possible use of remotely driven finger joints. Such remotely driven hands require computation of tendon displacement for evaluating joint space vectors before signals are sent to actuators. Alternatively, a direct drive hand is a mechanical hand in which the shafts of articulated joints are directly coupled to the rotors of motors with high output torques. This article has been divided into two main sections. The first section presents a brief view of manipulation using a direct drive approach. Meanwhile, the other section presents ongoing research which is being carried out to design a four-finger articulated hand in the Department of Cybernetics at the University of Reading.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
Single-crystal X-ray diffraction studies of two terminally protected tetrapeptides Boc-Ile-Aib-Val-m-ABA-OMe (I) and Boc-Ile-Aib-Phe-m-ABA-OMe (II) (Aib = alpha-aminoisobutyric acid; m-ABA = meta-aminobenzoic acid) reveal that they form continuous H-bonded helices through the association of double-bend (type III and I) building blocks. NMR Studies support the existence of the double-bend (type Ill and I) structures of the peptides in solution also. Field emission scanning electron-microscopic (FE-SEM) and high-resolution transmission electron-microscopic (HR-TEM) images of the peptides exhibit amyloid-like fibrils in the solid state. The Congo red-stained fibrils of peptide I and II, observed between crossed polarizers, show green-gold birefringence, a characteristic of amyloid fibrils.
Resumo:
Four-dimensional variational data assimilation (4D-Var) is used in environmental prediction to estimate the state of a system from measurements. When 4D-Var is applied in the context of high resolution nested models, problems may arise in the representation of spatial scales longer than the domain of the model. In this paper we study how well 4D-Var is able to estimate the whole range of spatial scales present in one-way nested models. Using a model of the one-dimensional advection–diffusion equation we show that small spatial scales that are observed can be captured by a 4D-Var assimilation, but that information in the larger scales may be degraded. We propose a modification to 4D-Var which allows a better representation of these larger scales.