915 resultados para Formulated products
Resumo:
This work aimed to evaluate the efficiency of fungicides in controlling in vitro and in vivo the causal agents of anthracnose (Colletotrichum gloeosporioides and C. acutatum) and black spot (Guignardia psidii) and evaluate the effect of alternative products to control these diseases. Inhibition of mycelial growth of the pathogens was evaluated for ten fungicides at concentrations of 1, 10 and 100 mg L-1 of active ingredient in potato-dextrose-agar medium. The effectiveness of the fungicides azoxystrobin + difenoconazole, cyproconazole, pyraclostrobin, tebuconazole and tebuconazole + trifloxystrobin in controlling disease incidence and severity of anthracnose, through applications in the field, was measured in fruits collected at three stages of maturation, according to the skin color ( dark green, light green and yellowish green). In postharvest dipping of fruits, the products evaluated were citric acid, peracetic acid, salicylic acid, sodium bicarbonate, chlorine dioxide, Ecolife (R) and chitosan. The fungicides azoxystrobin + difenoconazole, pyraclostrobin, tebuconazole and trifloxystrobin + tebuconazole were highly effective in inhibiting the in vitro mycelial growth of G. psidii and moderately to highly effective in inhibiting C. acutatum and C. gloeosporioides. In field conditions, the fungicide azoxystrobin + difenoconazole was effective in controlling anthracnose and black spot in fruit at three maturity stage ( skin color yellowish green). The alternative products tested were ineffective in the curative control of anthracnose and early blight at postharvest of guava.
Resumo:
This work presents two potential metallo-drugs, the ionic (C17H19FN3O3)(3)[RuCl6]center dot 3H(2)O (1) and the coordination [Ru(C17H17FN3O3)(3)]center dot 4H(2)O (2) compounds, obtained by the combination of ruthenium(III) and ciprofloxacin in different synthetic conditions. The ESI MS spectrum of 1 displayed a main peak at m/z = 994.6, assigned to the gaseous phase adduct (ciprofloxacin)(3)center dot H+, while 2 featured peaks at m/z 1093.3 and 547.1 ascribed to [Ru(C17H17FN3O3)(3)center dot H+-4H(2)O](+) and [Ru(C17H17FN3O3)(3)center dot 2H(+)-4H(2)O](2+). Thermal analysis corroborated the proposed water content for both complexes. Absorption spectra of the compounds in aqueous medium are dominated by ciprofloxacin transitions in the UV region but displayed weak bands in the visible region, assigned to ligand field transitions. The cyclic voltammograms of 2 exhibited a quasi-reversible process ascribed to the Ru(II)/(III) redox pair at -0.25V (vs. SHE) while 1 displayed this process at -0.11 V, showing that the central ruthenium ion is stabilized in the (III) oxidation state by the coordination to the hard oxygen atoms of ciprofloxacin. The solubility of 1 is pH dependent (as well as free ciprofloxacin) while 2 is fully water soluble and stable under physiological pH for at least 48 h. The compounds are also stable under incubation conditions (stomach pH and 37 degrees C) without significant pH lowering. An interaction study of 2 with ct-DNA showed a value of K-b = 2.47 (+/- 0.89) x 10(4) mol(-1) L for the intrinsic binding constant.
Influence of Fixation Products Used in the Histological Processing in the FTIR Spectra of Lung Cells
Resumo:
The aim of the present study is to evaluate the differences on FTIR spectra of the normal lung cell (noncancerous mice lung epithelial cell line e10) due to different fixation protocols for histological processing. The results shown that formalin and methacarn (normally used in fixation) did cause many changes on the FTIR spectra of mice lung cells e10, mainly in the organic compounds (800-1800 cm(-1)) in lipids, DNA, and proteins, and the alcohol 70% fixation protocol caused almost no changes on the FTIR spectra compared to unfixed cells spectra (in PBS). It can be concluded that histological processing with alcohol 70% fixation protocol can be used in the FTIR study of mice lung cell line e10.
Resumo:
Abstract Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis.
Resumo:
Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae) are presented as a new subject for extensive investigation to find novel natural products, which make them a potentially rich and innovative source for new drug candidates.
Resumo:
Ceratitis capitata is one of the most important pests of fruits for exportation, and Sterile Insect Technique (SIT) has been the most efficient and environmental friendly technique used to control fruit fly populations around the world. A key goal in achieving a successful SIT program is a mass rearing system producing high quality insects at low cost. Providing adults with an artificial diet containing hydrolysed protein has been the major obstacle for bio-production facilities in Brazil, because it is expensive and has to be imported. Two other commercial products, autolysed yeast (AY) and yeast extract (YE), of domestic origin and low cost, were tested as substitutes of the imported hydrolyzed protein. To compare their efficiency we observed the female fecundity, adult survival and egg viability of flies raised on diets containing one of each of the different protein products. Flies reared on the domestic yeast products had equivalent or superior performance to the flies reared on imported protein. Both AY and YE can be a possible substitute for imported hydrolyzed protein for C. capitata mass-rearing, as they are cheaper and are readily available in the national market.
Resumo:
In this work, carbon supported nickel based nanoparticles were prepared by impregnation method and used as anode electrocatalysts for the glycerol conversion. These metallic powders were mixed with a suitable amount of a Nafion/water solution to make catalytic inks which were then deposited onto the surface of carbon Toray used as a conductive substrate. Long-term electrolyses of glycerol were carried out in alkaline medium by chronoamperometry experiments. Analysis of the oxidation products was performed with ion-exclusion liquid chromatography which separates the analytes by ascending pKa. The spectroscopic measurements have shown that the cobalt content in the anode composition did contribute to the CAC bond cleavage of the initial molecule of glycerol.
Resumo:
Bronchial hyperresponsiveness is a hallmark of asthma and many factors modulate bronchoconstriction episodes. A potential correlation of formaldehyde (FA) inhalation and asthma has been observed; however, the exact role of FA remains controversial. We investigated the effects of FA inhalation on Ovalbumin (OVA) sensitisation using a parameter of respiratory mechanics. The involvement of nitric oxide (NO) and cyclooxygenase-derived products were also evaluated. The rats were submitted, or not, to FA inhalation (1%, 90 min/day, 3 days) and were OVA-sensitised and challenged 14 days later. Our data showed that previous FA exposure in allergic rats reduced bronchial responsiveness, respiratory resistance (Rrs) and elastance (Ers) to methacholine. FA exposure in allergic rats also increased the iNOS gene expression and reduced COX-1. L-NAME treatment exacerbated the bronchial hyporesponsiveness and did not modify the Ers and Rrs, while Indomethacin partially reversed all of the parameters studied. The L-NAME and Indomethacin treatments reduced leukotriene B4 levels while they increased thromboxane B2 and prostaglandin E2. In conclusion, FA exposure prior to OVA sensitisation reduces the respiratory mechanics and the interaction of NO and PGE2 may be representing a compensatory mechanism in order to protect the lung from bronchoconstriction effects.
Resumo:
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Resumo:
Máster Universitario International en Acuicultura. Trabajo presentado como requisito parcial para la obtención del Título de Máster Universitario Internacional en Acuicultura, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)
Resumo:
Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of rancidity in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of free fatty acids (FFA), diglycerides (DG), sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Most of the foods analysed in this study were meat products. In actual fact, lipid oxidation is a major deterioration reaction in meat and meat products and results in adverse changes in the colour, flavour and texture of meat. The development of rancidity has long recognized as a serious problem during meat handling, storage and processing. On a dairy product, a vegetal cream, a study of lipid fraction and development of rancidity during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and phytosterols content. Then, according to the interest that has been growing around functional food in the last years, a new electrophoretic method was optimized and compared with HPLC to check the quality of a beehive product like royal jelly. This manuscript reports the main results obtained in the five activities briefly summarized as follows: 1) comparison between HPLC and a new electrophoretic method in the evaluation of authenticity of royal jelly; 2) study of the lipid fraction of a vegetal cream under different storage conditions; 3) study of lipid oxidation in minced beef during storage under a modified atmosphere packaging, before and after cooking; 4) evaluation of the influence of dietary fat and processing on the lipid fraction of chicken patties; 5) study of the lipid fraction of typical Italian and Spanish pork dry sausages and cured hams.