943 resultados para Formation of the theoretical conceptions
Resumo:
The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.
Resumo:
D Le Messurier, R Winter, CM Martin; J Appl Cryst 39 (2006) 589 Sponsorship: EPSRC, CCLRC, Pilkington
Resumo:
Peace in the ancient world has been studied primarily from the perspective of pacifism and questions related to war and peace. This study employs a socio-historical method to determine how peace was understood in itself, not just with respect to war. It demonstrates that the Greco-Roman world viewed peace as brief periods of tranquility in an existence where conflict was the norm, while Paul regarded peace as the norm and conflict as an intrusive aberration. Through a historical and literary survey of Greco-Roman thought and culture, this study shows that myth, legend, religion, education, philosophy, and science created and perpetuated the idea that conflict was necessary for existence. Wars were fought to attain peace, which meant periods of calm, quiet, and security with respect to the gods, one's inner self, nature, others who are insiders, and others who are outsiders. Despite the desirability of peace, genuine peace was seldom experienced, and even then, only briefly, as underlying enmity persisted without resolution. While Paul supports the prevailing conception of peace as tranquility and felicity in relation to God, self, nature, and others, he differs as to the origin, attainment, and maintenance of peace. In Paul, peace originates in God and is graciously given to those who are justified and reconciled to God through Jesus Christ. God removes the enmity caused by sin and provides the indwelling Spirit to empower believers to think and behave in ways that promote and maintain peace. This study also examines how three social dynamics (honor-shame, patron-client, friendship-enmity) affect Paul's approach to conflict resolution with Philemon and Onesimus, Euodia and Syntyche, believers who are prosecuting one another in civil courts, and Peter. Rather than giving specific procedures for resolving conflict, Paul reinforces the believer's new identity in Christ and the implications of God's grace, love, and peace upon their thoughts, words, and behavior toward one another. Paul uses these three social dynamics to encourage believers in the right direction, but their ultimate accountability is to God. The study concludes with four strategic principles for educating the church and developing an atmosphere and attitude within the church for peacemaking.
Resumo:
This dissertation is an exercise in practical theology, which investigates and responds to the problem of changing holiness identity in the Church of the Nazarene. The first part of the study is an empirical investigation into the social context of contemporary Nazarene holiness identity and practices among Nazarenes in three congregations located in the Northeast United States. Previous research relied too heavily on secularization and sect-church theory to understand the dynamics of religious identity change among Nazarenes. The theological result was a pessimistic appraisal of the future possibilities of holiness identity and practice in the Church of the Nazarene. This study employs an alternative theory—Nancy T. Ammerman's theory of narrative religious identity—to understand the dynamics of lived religious life within these congregations and to identify the various holiness narratives at play. Ammerman's theory facilitates an empirical description of the multiple holiness identities emerging out of the social contexts of these Nazarene congregations and offers a way to account for identity change. At the heart of this research is the theoretical notion that a particular religious identity, in the case of the Church of the Nazarene, the "sanctified person," emerges out of a particular ecclesial context characterized by religious narratives and practices that shape this identity. Chapter one reviews the problem of holiness identity in the Church of the Nazarene and offers an analysis of recent sociological attempts to understand the changing identity among Nazarenes. Chapter two draws on sociological research to describe and depict the range of views of holiness held by some contemporary Nazarenes. Chapter three identifies the varieties of holiness identity within the three Nazarene congregations that are part of the study. Chapter four investigates the social sources that shape the various holiness identities discovered in these congregations. Chapter five is a description of the many ways religious narratives are enacted and engaged within these congregations. The second part of the study is a theological critique of contemporary Nazarene holiness identity. Chapter six draws on the theory of narrative identity proposed by Nancy Ammerman and outlines a theoretical model which describes the social conditions necessary to shape holiness identity, "the sanctified person," within the context of the local congregation. Finally, chapter seven draws on the theological resources of Mennonite scholar and historian John Howard Yoder to propose a way of construing and facilitating holiness identity formation that takes the ecclesiality of hoilness more seriously, emphasizes a clearer relationship between Jesus and the "Christlikeness" that is central to holiness, and highlights the importance of religious practices in the formation of a holiness identity.
Resumo:
This dissertation analyzes the theological and ethical convictions that led the people of the Plateau Vivarais-Lignon to shelter thousands of refugees between 1939 and 1945. It does so by examining the themes of narrative identity, hospitality, character formation, nonviolence, and the contextual witness of church tradition. Though a number of studies have been published about the rescue activity in this region of France during World War II, none have thoroughly analyzed the theological nature of this activity. Using the Plateau Vivarais-Lignon as a case study in theological ethics, the dissertation draws on historical sources as well as the work of contemporary theologians and ethicists to understand, interpret, and analyze the witness of this community. After situating its rescue and resistance work within the Huguenot narrative of persecution and exile, I examine the theological convictions of the Reformed pastor of Le Chambon-sur-Lignon, André Trocmé, who played a key role in making the Plateau a place of refuge during the Holocaust. The study highlights the importance of narrative in the actions of this community and discusses the relationship between narrative, character, and ethics. It then examines the nonviolent commitments of key leaders of the rescue effort, using this analysis as a springboard to engage in broader theological reflection about the ethics of nonviolence. After examining the radical hospitality practiced on the Plateau in light of biblical narratives and Reformed history, I investigate the counter-cultural nature of Christian hospitality. The study concludes by analyzing the nature and witness of the church in light of the legacy of the Plateau Vivarais-Lignon. The dissertation suggests that increased academic and ecclesial attention be given to the relationship between narrative and character, the counter-cultural shape of Christian hospitality, and the active nature of nonviolence. It presents an in-depth analysis of the theological and ethical convictions of the people of the Plateau Vivarais-Lignon, arguing that their witness has ongoing significance for communities of faith as they grapple with how to form disciples, relate to the wider society, welcome strangers, and communicate God's shalom in a world of violence.
Resumo:
This work reports the successful realization of MoS2 nanotubes by a novel intercalation chemistry and hydrothermal treatment. An inorganic-organic precursor of hexadecylamine (HDA) and molybdenum disulphide (MoS2) were used in synthesizing the nanocomposite comprising laminar MoS2 with HDA intercalated in the interlaminar spacing. The formation of MoS2 nanotubes occurred during hydrothermal treatment (HT) by a self-organized rolling mechanism. The nanotubes were observed to have dimensions 2-12 µm in length and inner diameters typically in the range of 25-100 nm. We also report the formation of amorphous nanocoils of MoS2 obtained during similar procedures.
Resumo:
This thesis is concerned with an investigation of the anodic behaviour of ruthenium and iridium in aqueous solution and particularly of oxygen evolution on these metals. The latter process is of major interest in the large-scale production of hydrogen gas by the electrolysis of water. The presence of low levels of ruthenium trichloride ca. 10-4 mol dm-3 in acid solution give a considerable increase in the rate of oxygen evolution from platinum and gold, but not graphite, anodes. The mechanism of this catalytic effect was investigated using potential step and a.c. impedance technique. Earlier suggestions that the effect is due to catalysis by metal ions in solution were proved to be incorrect and it was shown that ruthenium species were incorporated into the surface oxide film. Changes in the oxidation state of these ruthenium species is probably responsible for the lowering of the oxygen overvoltage. Both the theoretical and practical aspects of the reaction were complicated by the fact that at constant potential the rates of both the catalysed and the uncatalysed oxygen evolution processes exhibit an appreciable, continuous decrease with either time or degree of oxidation of the substrate. The anodic behaviour of iridium in the oxide layer region has been investigated using conventional electrochemical techniques such as cyclic voltammetry. Applying a triangular voltage sweep at 10 Hz, 0.01 to 1.50V increases the amount of electric charge which the surface can store in the oxide region. This activation effect and the mechanism of charge storage is discussed in terms of both an expanded lattice theory for oxide growth on noble metals and a more recent theory of irreversible oxide formation with subsequent stoichiometry changes. The lack of hysteresis between the anodic and cathodic peaks at ca. 0.9 V suggests that the process involved here is proton migration in a relatively thick surface layer, i.e. that the reaction involved is some type of oxide-hydroxide transition. Lack of chloride ion inhibition in the anodic region also supports the irreversible oxide formation theory; however, to account for the hydrogen region of the potential sweep a compromise theory involving partial reduction of the outer regions of iridium oxide film is proposed. The loss of charge storage capacity when the activated iridium surface is anodized for a short time above ca. 1.60 V is attributed to loss by corrosion of the outer active layer from the metal surface. The behaviour of iridium at higher anodic potentials in acid solution was investigated. Current-time curves at constant potential and Tafel plots suggested that a change in the mechanism of the oxygen evolution reaction occurs at ca. 1.8 V. Above this potential, corrosion of the metal occurred, giving rise to an absorbance in the visible spectrum of the electrolyte (λ max = 455 nm). It is suggested that the species involved was Ir(O2)2+. A similar investigation in the case of alkaline electrolyte gave no evidence for a change in mechanism at 1.8 V and corrosion of the iridium was not observed. Oxygen evolution overpotentials were much lower for iridium than for platinum in both acidic and alkaline solutions.
Resumo:
The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.
Resumo:
Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.
Resumo:
The classical picture of the hydrophobic stabilization of proteins invokes a resemblance between the protein interior and nonpolar solvents, but the extent to which this is the case has often been questioned. The protein interior is believed to be at least as tightly packed as organic crystals, and was shown to have very low compressibility. There is also evidence that these properties are not uniform throughout the protein, and conflicting views exist on the nature of sidechain packing and on its influence on the properties of the protein.
Resumo:
A multiscale model for the Vacuum Arc Remelting process (VAR) was developed to simulate dendritic microstructures during solidification and investigate the onset of freckle formation. On the macroscale, a 3D multi-physics model of VAR was used to study complex physical phenomena, including liquid metal flow with turbulence, heat transfer, and magnetohydrodynamics. The results showed that unsteady fluid flow in the liquid pool caused significant thermal perturbation at the solidification front. These results were coupled into a micromodel to simulate dendritic growth controlled by solute diffusion, including local remelting. The changes in Rayleigh number as the microstructure remelts was quantified to provide an indicator of when fluid flow channels (i.e. freckles) will initiate in the mushy zone. By examining the simulated microstructures, it was found that the Rayleigh number increased more than 300 times during remelting, which suggests that thermal perturbation could be responsible for the onset of freckle formation.
Resumo:
Wall-slip plays an important role in the flow behaviour of solder paste materials. The wall-slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin liquid layer adjacent to the wall, which causes slippage. The aim of this study is to investigate the influence of the solder paste formulation on wall-slip formation and its effect on the printability of these pastes material. A wall slip model is utilised to calculate the true viscosity and slip velocity for the lead-free solder pastes samples used in this study. The difference in the measured viscosity and the true viscosity could indicate wall-slip formation between the solder pastes and the parallel plate. Sample P1 showed a higher slip velocity compared to sample P2. The slip velocity calculated for the solder pastes could be used as a performance indicator to understand the paste release characteristics in the stencil printing process.
Resumo:
Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.
Resumo:
The purpose of this investigation was to examine the proposition that creosote, emplaced in an initially water saturated porous system, can be removed from the system through Pickering emulsion formation. Pickering emulsions are dispersions of two immiscible fluids in which coalescence of the dispersed phase droplets is hindered by the presence of colloidal particles adsorbed at the interface between the two immiscible fluid phases. Particle trapping is strongly favoured when the wetting properties of the particles are intermediate between strong water wetting and strong oil wetting. In this investigation the necessary chemical conditions for the formation of physically stable creosote-in-water emulsions protected against coalescence by bentonite particles were examined. It was established that physically stable emulsions could be formed through the judicious addition of small amounts of sodium chloride and the surfactant cetyl-trimethylammonium bromide. The stability of the emulsions was initially established by visual inspection. However, experimental determinations of emulsion stability were also undertaken by use of oscillatory rheology. Measurements of the elastic and viscous responses to shear indicated that physically stable emulsions were obtained when the viscoelastic systems showed a predominantly elastic response to shearing. Once the conditions were established for the formation of physically stable emulsions a "proof-of-concept" chromatographic experiment was carried out which showed that creosote could be successfully removed from a saturated model porous system. (C) 2007 Elsevier Ltd. All rights reserved.