990 resultados para Forests, Recreational use of.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in harbor seal (Phoca vitulina richardsi) abundance, concurrent with the decrease in salmonid (Oncorhynchus spp.) and other fish stocks, raises concerns about the potential negative impact of seals on fish populations. Although harbor seals are found in rivers and estuaries, their presence is not necessarily indicative of exclusive or predominant feeding in these systems. We examined the diet of harbor seals in the Umpqua River, Oregon, during 1997 and 1998 to indirectly assess whether or not they were feeding in the river. Fish otoliths and other skeletal structures were recovered from 651 scats and used to identify seal prey. The use of all diagnostic prey structures, rather than just otoliths, increased our estimates of the number of taxa, the minimum number of individuals and percent frequency of occurrence (%FO) of prey consumed. The %FO indicated that the most common prey were pleuronectids, Pacific hake (Merluccius productus), Pacific stag-horn sculpin (Leptocottus armatus), osmerids, and shiner surfperch (Cymatogaster aggregata). The majority (76%) of prey were fish that inhabit marine waters exclusively and fish found in marine and estuarine areas (e.g. anadromous spp.) which would indicate that seals forage predominantly at sea and use the estuary for resting and opportunistic feeding. Salmonid remains were encountered in 39 samples (6%); two samples contained identifiable otoliths, which were determined to be from chi-nook salmon (O. tshawytscha). Because of the complex salmonid composition in the Umpqua River, we used molecular genetic techniques on salmonid bones retrieved from scat to discern species that were rare from those that were abundant. Of the 37 scats with salmonid bones but no otoliths, bones were identified genetically as chinook or coho (O. kisutch) salmon, or steelhead trout (O. mykiss) in 90% of the samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The California market squid (Loligo opalescens Berry), also known as the opalescent inshore squid (FAO), plays a central role in the nearshore ecological communities of the west coast of the United States (Morejohn et al., 1978; Hixon, 1983) and it is also a prime focus of California fisheries, ranking first in dollar value and tons landed in recent years (Vojkovich, 1998). The life span of this species is only 7−10 months after hatching, as ascertained by aging statoliths (Butler et al., 1999; Jackson, 1994; Jackson and Domier, 2003) and mariculture trials (Yang, et al., 1986). Thus, annual recruitment is required to sustain the population. The spawning season ranges from April to November and spawning peaks from May to June. In some years there can be a smaller second peak in November. In Monterey Bay, the squids are fished directly on the egg beds, and the consequences of this practice for conservation and fisheries management are unknown but of some concern (Hanlon, 1998). Beginning in April 2000, we began a study of the in situ spawning behavior of L. opalescens in the southern Monterey Bay fishing area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of parasites as indicators of the stock structure of Pacific halibut (Hippoglossus stenolepis) in the northeast Pacific was investigated by using 328 adult (>55 cm fork length) halibut from 15 composite localities ranging from northern California to the northern Bering Sea and 96 juvenile (10–55 cm) halibut from five localities ranging from the northern Queen Charlotte Islands to the Bering Sea. Counts of eight selected parasite species (the juvenile acanthocephalans Corynosoma strumosum and C. villosum, the metacestode Nybelinia surmenicola, the digenean metacercaria Otodistomum sp., and the larval nematodes Anisakis simplex, Pseudoterranova decipiens, Contracaecum sp., and Spirurid gen. sp.) that produce infections of long duration, do not multiply in the host, and that have a relatively high abundance in at least one geographic locality were subjected to discriminant function analysis. Juvenile Pacific halibut showed no separation and, even though they were not heavily infected with parasites, the analysis suggested that juveniles could be a mixed stock. Three groups of adults were identified: fish from California to the southern Queen Charlotte Islands, those from the northern Queen Charlotte Islands to the central Bering Sea, and those from the central and north-ern Bering Sea. These groups suggest that the single stock concept be more thoroughly evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Young-of-year (YOY) blue-fish (Pomatomus saltatrix) along the U.S. east coast are often assumed to use estuaries almost exclusively during the summer. Here we present data from 1995 to 1998 indicating that YOY (30–260 mm FL) also use ocean habitats along the coast of New Jersey. An analysis of historical and recent data on northern and southern ocean beaches (0.1–2 m) and the inner continental shelf (5–27 m) during extensive sampling in New Jersey waters from 1995 to 1998 indicated that multiple cohorts occurred (June–August) in every year. When comparable collections of YOY were made in the ocean and in an adjacent estuary, the abundance was 1–2 orders of magnitude greater on ocean beaches during the summer. The YOY were even more abundant in ocean habitats in the fall (September–October), presumably as a result of YOY leaving estuaries to join the coastal migration south. During 1999 and 2000, YOY bluefish were tagged with internal sequential coded wire microtags in order to refine our under-standing of habitat use and movement. Few (0.04%) of the fish tagged on ocean beaches were recaptured; however, 2.2% of the fish tagged in the estuary were recaptured from 2 to 27 days after tagging. Recaptured fish grew quickly (average 1.37 mm FL/d). On ocean beaches YOY fed on a variety of invertebrates and fishes but their diet changed with size. By approximately 80–100 mm FL, they were piscivorous and fed primarily on engraulids, a pattern similar to that reported in estuaries. Based on distribution, abundance, and feeding, both spring- and summer-spawned cohorts of YOY bluefish commonly use ocean habitats. Therefore, attempts to determine factors affecting recruitment success based solely on estuarine sampling may be inadequate and further examination, especially of the contribution of the summer-spawned cohort in ocean habitats, appears warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Otolith thermal marking is an efficient method for mass marking hatchery-reared salmon and can be used to estimate the proportion of hatchery fish captured in a mixed-stock fishery. Accuracy of the thermal pattern classification depends on the prominence of the pattern, the methods used to prepare and view the patterns, and the training and experience of the personnel who determine the presence or absence of a particular pattern. Estimating accuracy rates is problematic when no secondary marking is available and no error-free standards exist. Agreement measures, such as kappa (κ), provide a relative measure of the reliability of the determinations when independent readings by two readers are available, but the magnitude of κ can be influenced by the proportion of marked fish. If a third reader is used or if two or more groups of paired readings are examined, latent class models can provide estimates of the error rates of each reader. Applications of κ and latent class models are illustrated by a program providing contribution estimates of hatchery-reared chum and sockeye salmon in Southeast Alaska.