988 resultados para Folga radial
Resumo:
Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB) is one variant seeing increasing use, because it is self-aligning and can support high loads. It is becoming increasingly important to understand how the SRB responds dynamically under a variety of conditions. This doctoral dissertation introduces a computationally efficient, three-degree-of-freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to nonlinear Hertzian contact theory. The results reveal how some of the more important parameters; such as diametral clearance, the number of rollers, and osculation number; influence ultimate bearing performance. Distributed defects, such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. Simulation results were verified with results obtained by applying the formula for the spherical roller bearing radial deflection and the commercial bearing analysis software. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system to demonstrate the application of this newly developed SRB model in a typical real world analysis. Accuracy of the model was verified by comparing measured to predicted behaviors for equivalent systems.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.
Resumo:
The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.
Resumo:
Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth.
Resumo:
Neurons from the anterior subventricular zone (SVZ) of the cerebral cortex migrate tangentially to become interneurons in the olfactory bulb during development and in adult rodents. This migration was defined as neuronophilic, independent of a radial glial substrate. The cortical SVZ and the rostral migratory stream to the olfactory bulb were shown to be rich in 9-O-acetyl GD3 gangliosides (9-O-acGD3), which have been previously shown to be implicated in gliophilic migration in the rodent cerebral cortex and cerebellum. In the present study, we performed SVZ explant cultures using rats during their first postnatal week to analyze the expression of these gangliosides in chain migration of neuronal precursors. We characterized migrating chains of these neuroblasts through morphological analysis and immunocytochemistry for the neural cell adhesion molecule. By using the Jones monoclonal antibody which binds specifically to 9-O-acGD3 we showed that migrating chains from the SVZ explants express 9-O-acGD3 which is distributed in a punctate manner in individual cells. 9-O-acGD3 is also present in migrating chains that form in the absence of radial glia, typical of the neuronophilic chain migration of the SVZ. Our data indicate that 9-O-acetylated gangliosides may participate in neuronophilic as well as gliophilic migration.
Resumo:
We measured human frequency response functions for seven angular frequency filters whose test frequencies were centered at 1, 2, 3, 4, 8, 16 or 24 cycles/360º using a supra-threshold summation method. The seven functions of 17 experimental conditions each were measured nine times for five observers. For the arbitrarily selected filter phases, the maximum summation effect occurred at test frequency for filters at 1, 2, 3, 4 and 8 cycles/360º. For both 16 and 24 cycles/360º test frequencies, maximum summation occurred at the lower harmonics. These results allow us to conclude that there are narrow-band angular frequency filters operating somehow in the human visual system either through summation or inhibition of specific frequency ranges. Furthermore, as a general result, it appears that addition of higher angular frequencies to lower ones disturbs low angular frequency perception (i.e., 1, 2, 3 and 4 cycles/360º), whereas addition of lower harmonics to higher ones seems to improve detection of high angular frequency harmonics (i.e., 8, 16 and 24 cycles/360º). Finally, we discuss the possible involvement of coupled radial and angular frequency filters in face perception using an example where narrow-band low angular frequency filters could have a major role.
Resumo:
New neurons are constantly added to the olfactory bulb of rodents from birth to adulthood. This accretion is not only dependent on sustained neurogenesis, but also on the migration of neuroblasts and immature neurons from the cortical and striatal subventricular zone (SVZ) to the olfactory bulb. Migration along this long tangential pathway, known as the rostral migratory stream (RMS), is in many ways opposite to the classical radial migration of immature neurons: it is faster, spans a longer distance, does not require radial glial guidance, and is not limited to postmitotic neurons. In recent years many molecules have been found to be expressed specifically in this pathway and to directly affect this migration. Soluble factors with inhibitory, attractive and inductive roles in migration have been described, as well as molecules mediating cell-to-cell and cell-substrate interactions. However, it is still unclear how the various molecules and cells interact to account for the special migratory behavior in the RMS. Here we will propose some candidate mechanisms for roles in initiating and stopping SVZ/RMS migration.
Resumo:
Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.
Resumo:
Reelin is an extracellular matrix protein that is defective in reeler mutant mice and plays a key role in the organization of architectonic patterns, particularly in the cerebral cortex. In mammals, a "reelin signal" is activated when reelin, secreted by Cajal-Retzius neurons, binds to receptors of the lipoprotein receptor family on the surface of cortical plate cells, and triggers Dab1 phosphorylation. As reelin is a key component of cortical development in mammals, comparative embryological studies of reelin expression were carried out during cortical development in non-mammalian amniotes (turtles, squamates, birds and crocodiles) in order to assess the putative role of reelin during cortical evolution. The data show that reelin is present in the cortical marginal zone in all amniotes, and suggest that reelin has been implicated in the evolution of the radial organization of the cortical plate in the synapsid lineage leading from stem amniotes to mammals, as well as in the lineage leading to squamates, thus providing an example of homoplastic evolution (evolutionary convergence). The mechanisms by which reelin instructs radial cortical organization in these two lineages seem different: in the synapsid lineage, a drastic amplification of reelin production occurred in Cajal-Retzius cells, whereas in squamates, in addition to reelin-secreting cells in the marginal zone, a second layer of reelin-producing cells developed in the subcortex. Altogether, our results suggest that the reelin-signaling pathway has played a significant role in shaping the evolution of cortical development.
Resumo:
In this paper, the topology of cortical visuotopic maps in adult primates is reviewed, with emphasis on recent studies. The observed visuotopic organisation can be summarised with reference to two basic rules. First, adjacent radial columns in the cortex represent partially overlapping regions of the visual field, irrespective of whether these columns are part of the same or different cortical areas. This primary rule is seldom, if ever, violated. Second, adjacent regions of the visual field tend to be represented in adjacent radial columns of a same area. This rule is not as rigid as the first, as many cortical areas form discontinuous, second-order representations of the visual field. A developmental model based on these physiological observations, and on comparative studies of cortical organisation, is then proposed, in order to explain how a combination of molecular specification steps and activity-driven processes can generate the variety of visuotopic organisations observed in adult cortex.
Resumo:
Background: Interest in limb defects has grown after the thalidomide tragedy in the 1960s. As a result, congenital malformation registries, monitoring changes in birthprevalence and defect patterns, have been established in several countries. However, there are only a few true population based studies on birth prevalence of upper limb defects. The burden of hospital care among these children, specifically in terms of the number of admissions and total time spent in hospital, is also unknown. Aims and Methods: This study is based on information gathered from the Finnish Register of Congenital malformations (FRM) and the Finnish Hospital Discharge Register (FHDR). A total of 417 children born between 1993 and 2005 with an upper limb defect were gathered from the FRM. The upper limb defects were classified using the International Federation of Societies for Surgery of the Hand -classification that enables comparison with previous and future studies. Birth and live birth prevalence, sex and side distribution, frequency of associated anomalies as well as the proportion of perinatal and infant deaths according to the different subtypes were calculated. The number of hospital admissions, days spent in hospital, number and type of surgical operations were collected from the FHDR. Special features of two subgroups, radial ray defects (RRD) and constriction band syndrome (CBS), were explored. Results: Upper limb defects were observed in 417 of 753 342 consecutive births and in 392 of 750 461 live births. Birth prevalence was 5.5 per 10 000 births and 5.2 per 10 000 live births. Multiple anomalies or a known syndrome was found in 250 cases (60%). Perinatal mortality was 139 per 1000 births and infant mortality 135 per 1000 live births (overall Finnish perinatal mortality <5 per 1000 births and infant mortality 3.7 per 1000 live births). Altogether, 138 infants had RRD and 120 (87%) of these had either a known syndrome or multiple major anomalies. The proportion of perinatal deaths in RRD group was 29% (40/138) and infant deaths 35% (43/123). Fifty-one children had CBS in upper limbs. Fifteen of these (29%) had other major anomalies associated with constriction rings. The number of hospital admissions per year of children with congenital upper limb defects was 11-fold and the time spent in hospital 13-fold as compared with the general paediatric population. Conclusions: Birth prevalence of congenital upper limb defects was 5.5 per 10 000 births and 5.2 per 10 000 live births. RRD was especially associated with other major anomalies and high mortality. Nearly one third of the children with CBS also had other major anomalies suggesting different aetiologies inside the group. The annual burden of hospital care of children with congenital upper limb defects was at least 11-fold as compared with the general paediatric population.
Resumo:
Although much is known about the molecules involved in extracellular Ca2+ regulation, the relationship of the ion with overall cell morphology is not understood. The objective of the present study was to determine the effect of the Ca2+ chelator EGTA on the major cytoskeleton components, at integrin-containing adhesion sites, and their consequences on cell shape. Control mouse cell line C2C12 has a well-spread morphology with long stress fibers running in many different directions, as detected by fluorescence microscopy using rhodamine-phalloidin. In contrast, cells treated with EGTA (1.75 mM in culture medium) for 24 h became bipolar and showed less stress fibers running in one major direction. The adhesion plaque protein alpha5-integrin was detected by immunofluorescence microscopy at fibrillar adhesion sites in both control and treated cells, whereas a dense labeling was seen only inside treated cells. Microtubules shifted from a radial arrangement in control cells to a longitudinal distribution in EGTA-treated cells, as analyzed by immunofluorescence microscopy. Desmin intermediate filaments were detected by immunofluorescence microscopy in a fragmented network dispersed within the entire cytoplasm in EGTA-treated cells, whereas a dense network was seen in the whole cytoplasm of control cells. The present results suggest that the role of extracellular Ca2+ in the regulation of C2C12 cell shape can be mediated by actin-containing stress fibers and microtubules and by intermediate filament reorganization, which may involve integrin adhesion sites.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.
Resumo:
When contrast sensitivity functions to Cartesian and angular gratings were compared in previous studies the peak sensitivity to angular stimuli was reported to be 0.21 log units higher. In experiments carried out to repeat this result, we used the same two-alternative forced-choice paradigm, but improved experimental control and precision by increasing contrast resolution from 8 to 12 bits, increasing the screen refresh rate from 30 Hz interlaced to 85 Hz non-interlaced, linearizing the voltage-luminance relation, modulating luminance in frequencies that minimize pixel aliasing, and improving control of the subject's exposure to the stimuli. The contrast sensitivity functions to Cartesian and angular gratings were similar in form and peak sensitivity (2.4 cycles per visual degree (c/deg) and 32 c/360º, respectively) to those reported in a previous study (3 c/deg and 32 c/360º, respectively), but peak sensitivity to angular stimuli was 0.13 log units lower than that to Cartesian stimuli. When the experiment was repeated, this time simulating the experimental control level used in the previous study, no difference between the peak sensitivity to Cartesian and angular stimuli was found. This result agrees with most current models that assume Cartesian filtering at the first visual processing stage. The discrepancy in the results is explained in part by differences in the degree of experimental control.
Resumo:
Tässä työssä tutkitaan propulsioyksikön kiinnitysrenkaan pulttiliitosten vaikutusta asen-nushitsauksesta aiheutuviin hitsausmuodonmuutoksiin. Hitsausmuodonmuutoksissa tutki-taan tärkeimpinä kohtina asennuslohkossa laakerin rajapintaa sekä kääntömoottorin kiinni-tyspintaa. Tutkimuksessa asennuslohkon hitsaaminen ja muodonmuutosten arvioiminen toteutettiin käyttämällä epälineaarista elementtimenetelmää. Ensisijaisena tavoitteena työssä on tutkia esikiristettyjen pulttiliitoksien vaikutusta raken-teen muodonmuutoksiin ja pohtia aiheutuvien siirtymien perusteella pulttien tarpeellisuutta rakenteessa. Tämän lisäksi vertaillaan pultillisen ja pultittoman kiinnitystavan eroavaisuuk-sia tuloksia analysoimalla. Saatujen tuloksien perusteella radiaaliset ja aksiaaliset siirtymät eivät olleet riittävän suuria aiheuttamaan haittoja rakenteen toimivuudelle kummassakaan mallissa. Lisäanalyysejä tar-kemmalla lämmöntuonnilla voidaan pitää tarvittavana pulttiliitoksien tarpeellisuuden tar-kemman testaamisen vuoksi.