955 resultados para Fish and game licenses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT TRANSCRIBED FROM ENGLE'S PH.D. ORAL DEFENSE PAMPHLET: The natural history of juvenile California spiny lobster, Panulirus interruptus (Randall), was investigated, with primary emphasis placed on ascertaining juvenile habitats, determining juvenile growth rates and component growth processes, and evaluating ecological and behavioral phenomena associated with juvenile survival and growth. Habitat surveys of island and mainland localities throughout southern and lower California revealed that small, greenish juveniles typically inhabit crevices or temporary burrows in 0-4m deep, wave-swept rocky habitats covered by dense beds of surf grass, Phyllospadix torreyi S. Watson. Phyllospadix beds were more abundant on gradually sloping rocky mainland beaches than on steeply sloping island shores. Phyllospadix abundance was positively correlated with P. interruptus abundance; however, at Santa Catalina Island, the Phyllospadix habitat was not extensive enough to be the sole lobster nursery. In laboratory tests, puerulus larvae and early juveniles chose Phyllospadix over rubble rocks or broad-bladed kelp, but did not consistently prefer Phyllospadix over reticulate algae. Ecology, growth, and behavior of juvenile P. interruptus inhabiting a discrete Phyllospadix habitat at Bird Rock, Santa Catalina Island, were investigated from October 1974 through December 1976 by means of frequent scuba surveys. Pueruli settled from June to November. Peak recruitment occurred from July to September, when seasonal temperatures were maximal. Settled larvae were approximately one year old. Juvenile growth was determined by size-frequency, single molt increment, mark-recapture, and laboratory culture studies. Carapace length vs. wet weight relationships fit standard power curve equations. Bird Rock juveniles grew from 7 to 32mm CL in 10-11 molts and from 32 to 56mm CL in 5-6 molts during their first and second benthic years, respectively. Growth rates were similar for males and females. Juveniles regenerating more than two limbs grew less per molt than intact lobsters. Long-term growth of laboratory-reared juveniles was 20% less than that of field lobsters. Growth component multiple regression analyses demonstrated that molt increment was directly proportional to premolt size and temperature for age 1+ lobsters. Molt frequency was inversely proportional to size and directly proportional to temperature. Temperature affected age 2+ lobsters similarly, but molt increment was independent of size, and molt frequency declined at a different rate. Juvenile growth rates more than doubled during warm water months compared to cold water months, primarily because of increased molt frequency. Based on results from this study and from previous investigations, it is estimated that P. interruptus males and females become sexually mature by ages 4 and 5 years, respectively, and that legai size is reached by 7 or 8 years of age. Juvenile P. interruptus activity patterns and foraging behavior were similar to those of adults, except that juvenile home ranges were proportionally smaller, and small juveniles were apparently not attracted to distant food. Small mollusks, abundant in Phyllospadix habitats, were the major food items. Size-dependent predation by fish and octopus apparently caused the considerable juvenile mortality observed at Bird Rock. Juveniles approaching 2 years of age gathered in mixed size-class aggregations by day and foraged beyond the grass beds at night. In autumn, these juveniles migrated to deeper habitats, coincident with new puerulus settlement in the Phyllospadix beds. Based on strong inferences from the results, it is proposed that size-dependent predation is the most important factor determining the !ife history strategy of juvenile P. interruptus. Life history tactics promoting rapid growth apparently function dually in reducing the period of high vulnerability to predation and decreasing the time required to reach sexual maturity. The Phyllospadix habitat is an excellent lobster nursery because it provides shelter from predators and possesses abundant food resources for sustaining optimum juvenile growth rates in shallow, warm water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The WorldFish Center is implementing the FtF Aquaculture Project in 20 southern districts in Bangladesh. The project is implemented under USAID’s Feed the Future initiative in collaboration with the Government of Bangladesh. The project contributes to achieving the ‘Feed the Future’ goals through four objectives: (i) dissemination of improved quality fish and shrimp seed, (ii) improving the nutrition and income status of farm households, (iii) increasing investment, employment and fish production through commercial aquaculture and (iv) policy and regulatory reform and institutional capacity building to support sustainable aquaculture growth. The project commissioned this study to gather insights into the value chains of shrimp, prawn and tilapia in the project region and the feasibility of promoting culture of brackish water sea-bass in the region. The findings and recommendations are expected to provide the foundation for the project to design its interventions for achieving its goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We monitored the movements of 45 adult Summer Flounder (Paralichthys dentatus) between June 2007 and July 2008 through the use of passive acoustic telemetry to elucidate migratory and within-estuary behaviors in a lagoon system of the southern mid-Atlantic Bight. Between 8 June and 10 October 2007, fish resided primarily in the deeper (>3 m) regions of the system and exhibited low levels of large-scale (100s of meters) activity. Mean residence time within this estuarine lagoon system was conservatively estimated to be 130 days (range: 18–223 days), which is 1.5 times longer than the residence time previously reported for Summer Flounder in a similar estuarine habitat ~250 km to the north. The majority of fish remained within the lagoon system until mid-October, although some fish dispersed earlier and some of them appeared to disperse temporarily (i.e., exited the system for at least 14 consecutive days before returning). Larger fish were more likely to disperse before mid-October than smaller fish and may have moved to other estuaries or the inner continental shelf. Fish that dispersed after mid-October were more likely to return to the lagoon system the following spring than were fish that dispersed before mid-October. In 2008, fish returned to the system between 7 February and 7 April. Dispersals and returns most closely followed seasonal changes in mean water temperature, but photoperiod and other factors also may have played a role in large-scale movements of Summer Flounder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish traps are commonly used throughout the Caribbean to catch reef fish species and lobster and are the primary gear of choice for fishermen in the U.S. Virgin Islands. Once they are lost or abandoned they are referred to as derelict fish traps (DFTs)and a widespread concern exists that they contribute to ghostfishing. Ghostfishing occurs when derelict fishing gear continues to catch fish and induce mortality. Despite the public concerns that DFTs are an environmental threat, few studies have quantified the level of ghostfishing in the Caribbean. To address concerns from the fishing community and other marine stakeholders, this study provides the first experimental examination of ghostfishing impacts to fish and the potential economic impacts to fisheries in the U.S. Virgin Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2001, biannual fish and habitat monitoring has been conducted for the shallow (> 30 m), colonized pavement and gorgonian dominated Buck Island Reef National Monument (BIRNM) St. Croix, USVI and adjacent waters. during October, 2005, widespread coral bleaching was observed within the ∼50 square-kilometer study area that was preceded by 10 wks of higher than average water temperatures (28.9–30.1 °C). Random transects (100 square meters) were conducted on linear reefs, patch reefs, bedrock, pavement, and scattered coral/rock habitats during October 2005, and April and October 2006, and species specific bleaching patterns were documented. During October 2005 approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching. Coral cover for Montastraea annularis and species of the genus Agaricia were the most affected, while other species exhibited variability in their susceptibility to bleaching. Bleaching was evident at all depths (1.5–28 m), was negatively correlated with depth, and positively correlated with habitat complexity. Bleaching was less prevalent at all depths and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006. Four species and one genus did not exhibit signs of bleaching throughout the study period (Dendrogyra cylindrus, Eusmilia fastigata, Mussa angulosa, Mycetophyllia aliciae, Scolymia spp.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bycatch, or the incidental catch of nontarget organisms during fi shing operations, is a major issue in U.S. shrimp trawl fisheries. Because bycatch is typically discarded at sea, total bycatch is usually estimated by extrapolating from an observed bycatch sample to the entire fleet with either mean-per-unit or ratio estimators. Using both field observations of commercial shrimp trawlers and computer simulations, I compared five methods for generating bycatch estimates that were used in past studies, a mean-per-unit estimator and four forms of the ratio estimator, respectively: 1) the mean fish catch per unit of effort, where unit effort was a proxy for sample size, 2) the mean of the individual fish to shrimp ratios, 3) the ratio of mean fish catch to mean shrimp catch, 4) the mean of the ratios of fish catch per time fished (a variable measure of effort), and 5) the ratio of mean fish catch per mean time fished. For field data, different methods used to estimate bycatch of Atlantic croaker, spot, and weakfish yielded extremely different results, with no discernible pattern in the estimates by method, geographic region, or species. Simulated fishing fleets were used to compare bycatch estimated by the fi ve methods with “actual” (simulated) bycatch. Simulations were conducted by using both normal and delta lognormal distributions of fish and shrimp and employed a range of values for several parameters, including mean catches of fish and shrimp, variability in the catches of fish and shrimp, variability in fishing effort, number of observations, and correlations between fish and shrimp catches. Results indicated that only the mean per unit estimators provided statistically unbiased estimates, while all other methods overestimated bycatch. The mean of the individual fish to shrimp ratios, the method used in the South Atlantic Bight before the 1990s, gave the most biased estimates. Because of the statistically significant two- and 3-way interactions among parameters, it is unlikely that estimates generated by one method can be converted or corrected to estimates made by another method: therefore bycatch estimates obtained with different methods should not be compared directly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the migration and behavior of young Pacific Bluefin tuna (Thunnus orientalis) using archival tags. The archival tag measures environmental variables, records them in its memory, and estimates daily geographical locations based on measured light levels. Of 166 archival tags implanted in Pacific bluefin tuna that were released at the northeastern end of the East China Sea from 1995 to 1997, 30 tags were recovered, including one from a fish that migrated across the Pacific. This article describes swimming depth, ambient water temperature, and feeding frequency of young Pacific bluefin tuna based on retrieved data. Tag performance, effect of the tag on the fish, and horizontal movements of the species are described in another paper. Young Pacific bluefin tuna swim mainly in the mixed layer, usually near the sea surface, and swim in deeper water in daytime than at nighttime. They also exhibit a pattern of depth changes, corresponding to sunrise and sunset, apparently to avoid a specific low light level. The archival tags recorded temperature changes in viscera that appear to be caused by feeding, and those changes indicate that young Pacific bluefin tuna commonly feed at dawn and in the daytime, but rarely at dusk or at night. Water temperature restricts their distribution, as indicated by changes in their vertical distribution with the seasonal change in depth of the thermocline and by the fact that their horizontal distribution is in most cases confined to water in the temperature range of 14−20°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth parameters were estimated for porbeagle shark (Lamna nasus) in the northwest Atlantic Ocean on the basis of vertebral annuli. A total of 578 vertebrae was analyzed. Annuli were validated up to an age of 11 years by using vertebrae from recaptured oxytetracycline-injected and known-age sharks. Males and females grew at similar rates until the size of male sexual maturity, after which the relative growth of the males declined. The growth rate of the females declined in a similar manner at the onset of maturity. Growth curves were consistent with those derived from tag-recapture analyses (GROTAG) of 76 recaptured fish and those based on length-frequency methods with measurements from 13,589 individuals. Von Bertalanffy growth curve parameters (combined sexes) were L∞ = 289.4 cm fork length, K = 0.07 and t0 = –6.06. Maximum age, based on vertebral band pair counts, was 25 and 24 years for males and females, respectively. Longevity calculations, however, indicated a maximum age of 45 to 46 years in an unfished population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenyl-mercuric lactate is included in the pulp processing reagents by some paper mills to eliminate slime formation in the pulp. Small quantities of this chemical are added to the wet pulp in the beaters, particularly for the bactericidal action against Aerobacter aerogenes. Subsequently the mecurial is carried away in the wash waters. However, as the highly poisonous nature of many compounds of mercury is well known, questions have been raised concerning the pollution hazards created by phenyl-mercuric lactate in streams receiving effluents from mills using this substance.