928 resultados para Fibers of the leaf carnauba
Resumo:
Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deight-oniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil (R), a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.
Resumo:
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length: width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Calluna vulgaris is one of the most important landscaping plants produced in Germany. Its enormous economic success is due to the prolonged flower attractiveness of mutants in flower morphology, the so-called bud-bloomers. In this study, we present the first genetic linkage map of C. vulgaris in which we mapped a locus of the economically highly desired trait " flower type" .Results: The map was constructed in JoinMap 4.1. using 535 AFLP markers from a single mapping population. A large fraction (40%) of markers showed distorted segregation. To test the effect of segregation distortion on linkage estimation, these markers were sorted regarding their segregation ratio and added in groups to the data set. The plausibility of group formation was evaluated by comparison of the " two-way pseudo-testcross" and the " integrated" mapping approach. Furthermore, regression mapping was compared to the multipoint-likelihood algorithm. The majority of maps constructed by different combinations of these methods consisted of eight linkage groups corresponding to the chromosome number of C. vulgaris.Conclusions: All maps confirmed the independent inheritance of the most important horticultural traits " flower type" , " flower colour" , and " leaf colour". An AFLP marker for the most important breeding target " flower type" was identified. The presented genetic map of C. vulgaris can now serve as a basis for further molecular marker selection and map-based cloning of the candidate gene encoding the unique flower architecture of C. vulgaris bud-bloomers. © 2013 Behrend et al.; licensee BioMed Central Ltd.
Resumo:
The in vitro anti-fungal activity of leaf and stem bark of Daniella oliveri Rolfe was investigated against selected yeasts and moulds including dermatophytes. Water and methanol were used to extract the powdered leaf and stem bark using cold infusion. Antimicrobial activity was assessed by agar-well diffusion. Phytochemical analysis was carried out using standard procedures. The plant extracts were active against the test organisms at concentrations ranging from 3.125-100 mg/mL. The methanol extracts were more active than the aqueous extracts with the highest inhibition against the yeasts, Candida albicans and Candida krusei (MIC values of 3.125 mg/mL and 6.25 mg/mL respectively). Epidermophyton floccosum and Trichophyton interdigitale were the least inhibited of all the fungal strains. Phytochemical screening revealed the presence of tannins, anthraquinones, flavonoids, cardiac glycosides, alkaloids and saponins. The anti-fungal activity of Daniella oliveri as shown in this study indicates that the plant has the potential of utilisation in the development of chemotherapeutic agents for the treatment of relevant fungal infections.
Resumo:
Background: Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials.Purpose and methods: Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison.Results: The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed.Conclusion: This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental impacts.
Resumo:
Recent work has shown that the cardiac outflow tract of sharks and chimaeras does not consist of a single myocardial component, the conus arteriosus, as classically accepted, but two, namely, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. However, the anatomical composition of the outflow tract of the batoid hearts remains unknown. The present study was designed to fill this gap. The material examined consisted of hearts of two species of rays, namely, the Mediterranean starry ray (Raja asterias) and sandy ray (Leucoraja circularis). They were studied using scanning electron microscopy, and histochemical and inmunohistochemical techniques. In both species, the outflow tract consists of two components, proximal and distal with regard to the ventricle. The proximal component is the conus arteriosus; it is characterized by the presence of compact myocardium in its wall and several transverse rows of pocket-shaped valves at its luminal side. Each valve consists of a leaflet and its supporting sinus. Histologically, the leaflet has two fibrosas, inner and outer, and a middle coat, the spongiosa. The distal component lacks myocardium. Its wall consists of smooth muscle cells, elastic fibers and collagen. Thus, it shows an arterial-like structure. However, it differs from the aorta because it is covered by the epicardium and crossed by coronary arteries. These findings indicate that the distal component is morphologically equivalent to the bulbus arteriosus of sharks and chimaeras. In contrast to foregoing descriptions, the valves of the first transverse row are distally anchored to the bulbus arteriosus and not to the ventral aorta. Our findings give added support to the notion that presence of a bulbus arteriosus at the arterial pole of the heart is common to all chondrichtyans, and not an apomorphy of actinopterygians as classically thought.
Resumo:
Tese de dout. em Química, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2002
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
2016
Resumo:
In folder.
Resumo:
Laboratory colonies of the leaf-cutting ants Atta sexdens feed daily with leaves of Ipomoea batatas showed ant mortality and a significant decrease in the size of the fungal garden after the second week, with complete depletion of nests after 5 weeks of treatment. The mean oxygen consumption rate of these ants was higher than the control (ants collected from nests feed with leaves of Eucalyptus alba), suggesting a physiological action of the leaves of I. batatas on the ants in addition to the effect of inhibiting the growth of the fungal garden.
Resumo:
2007
Resumo:
Apples are commercially grown in Brazil in a subtropical environment that favors the development of fungal diseases such as Glomerella leaf spot (GLS) caused mainly by Glomerella cingulata (anamorph Colletotrichum gloeosporioides). The main objective of this work was to evaluate the effect of mixed infections by Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) on the infection and the colonization processes of C. gloeosporiodes in cv. Maxi Gala plants. Leaves of 16-month-old potted plants were spray-inoculated and both the disease incidence and lesion count were monitored over time and leaf severity was assessed in the final evaluation using an image analysis tool. Results showed that initial infection estimated from a monomolecular model fitted to progress of lesion count was higher and the incubation period (time to reach 50% incidence) was on average 10 h shorter in virus-infected plants compared to non-infected plants. It is hypothesized that initial events such as conidial germination and fungal penetration into plant cells were facilitated by the presence of viral infection. Also, final GLS severity was significantly higher in the virus-infected plants. Mixed infections by ASGV/ASPV seemed to make apple leaves more susceptible to the initial infection and colonization by C. gloeosporioides.