1000 resultados para Fermi super-fluid


Relevância:

20.00% 20.00%

Publicador:

Resumo:


IIt is well recognised that medical students and junior doctors find fluid prescription a challenging topic. This study was designed to gain a greater understanding of the experiences that medical students face related to learning about fluid prescribing. Methods: A qualitative approach, using focus groups, was employed in this research. Final-year medical students in academic year 2011-12 at Queen's University Belfast were invited to participate during their 'Assistantship' placement in March 2012. Discussions in focus groups, consisting of between six and eight students, were recorded and transcribed verbatim. The research team, consisting of three separate investigators, conducted thematic analysis independently. A final consensus regarding emerging themes was reached by discussion within the whole research team. Medical students and junior doctors find fluid prescription a challenging topic Results: Five prominent themes emerged: 'Teaching experience: a disruptive variation'; 'Curricular disconnections'; 'The driving test: Theory-practice transformation'; 'Role modelling: which standard to aspire to?'; and finally 'Reconciling the perceived risk'. Discussion: This re search provided insights into medical students' opinions of the teaching practices and learning experiences related to fluid prescribing. The learning of prescribing skills is complex andcontextual. In the development of such skills, medical students are often exposed to conflicting educational experiences that challenge the novicelearner in making judgements on best prescribing practice. This study adds to the body of evidence that fluid prescription is a difficult topic, and has generated a number of multifaceted and strategic recommendations to potentially improve fluid prescription teaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ∼ 150-200 d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterized by weak or absent [Fe III] emission, pointing at a low ejecta ionization state as a result of high densities. To constrain the ejecta and Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ∼60 d. Models with enough Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much γ -ray trapping.We instead propose a model with ∼1M of Ni and ∼2 M of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 M of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative monitoring of a mechanochemical reaction by Raman spectroscopy leads to a surprisingly straightforward second-order kinetic model in which the rate is determined simply by the frequency of reactive collisions between reactant particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the rational for the selection of fluids for use in a model based study of sub and supercritical Waste Heat Recovery (WHR) Organic Rankine Cycle (ORC). The study focuses on multiple vehicle heat sources and the potential of WHR ORC’s for its conversion into useful work. The work presented on fluid selection is generally applicable to any waste heat recovery system, either stationary or mobile and, with careful consideration, is also applicable to single heat sources. The fluid selection process presented reduces the number of potential fluids from over one hundred to a group of under twenty fluids for further refinement in a model based WHR ORC performance study. The selection process uses engineering judgement, legislation and, where applicable, health and safety as fluid selection or de-selection criteria. This paper also investigates and discusses the properties of specific ORC fluids with regard to their impact on the theoretical potential for delivering efficient WHR ORC work output. The paper concludes by looking at potential temperature and pressure WHR ORC limits with regard to fluid properties thereby assisting with the generation of WHR ORC simulation boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term fatigue loads on the Oyster Oscillating Wave Surge Converter (OWSC) is used to describe hydrostatic loads due to water surface elevation with quasi-static changes of state. Therefore a procedure to implement hydrostatic pressure distributions into finite element analysis of the structure is desired. Currently available experimental methods enable one to measure time variant water surface elevation at discrete locations either on or around the body of the scale model during tank tests. This paper discusses the development of a finite element analysis procedure to implement time variant, spatially distributed hydrostatic pressure derived from discretely measured water surface elevation. The developed method can process differently resolved (temporal and spatial) input data and approximate the elevation over the flap faces with user defined properties. The structural loads, namely the forces and moments on the body can then be investigated by post processing the numerical results. This method offers the possibility to process surface elevation or hydrostatic pressure data from computational fluid dynamics simulations and can thus be seen as a first step to a fluid-structure interaction model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.