997 resultados para Feo-hifornicose subcutânea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ridge of strongly serpentinized, plagioclase-bearing peridotite crops out at the boundary between the Atlantic oceanic crust and the Galicia continental margin (western Spain). These peridotites, cored at Hole 637A (ODP Leg 103) have been mylonitized at high-temperature, low-pressure conditions and under large deviatoric stress during their uplift (Girardeau et al., 1988, doi:10.2973/odp.proc.sr.103.135.1988). After this main ductile deformation event, the peridotite underwent a polyphase metamorphic static episode in the presence of water, with the crystallization of Ti- and Cr-rich pargasites at high-temperature (800°-900°C) interaction with a metasomatic fluid or alkaline magma. Introduction of water produced destabilization of the pyroxenes and the subsequent development of hornblendes and tremolite at temperatures decreasing from 750° to 350°C. The main serpentinization of the peridotite occurred at a temperature below 300°C, and possibly around 50°C, as a consequence of the introduction of a large amount of seawater, which is suggested by stable isotope (d18O and SD) data. Finally, calcite derived from seawater precipitated in late-formed fractures or locally pervasively impregnated the peridotite at low temperature (~10°C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basalts recovered during Legs 183 and 120 from the southern, central, and northernmost parts of the Kerguelen Plateau (Holes 1136A, 1138A, 1140A, and 747C, respectively), as well as those recovered from the eastern part of the crest of Elan Bank (Hole 1137A), represent derivates from tholeiitic melts. In the northern part of the Kerguelen Plateau (Hole 1140A), basalts may have formed from two sources located at different depths. This is reflected in the presence of both low- and high-titanium basalts. The basalts are variably altered by low-temperature hydrothermal processes (at temperatures up to 120°C), and some are affected by subaerial weathering. The hydrothermal alteration led mainly to the formation of smectites, chlorite minerals, mixed-layer hydromica-smectite and smectite-chlorite minerals, hydromica, serpentine(?), clinoptilolite, heulandite, stilbite, analcime, mordenite, thomsonite, natrolite(?), calcite, quartz, and dickite(?). Alteration of extrusive basalts is mainly related to horizontal fluid flow within permeable contact zones between lava flows. Under a nonoxidizing environment of alteration, the tendency to lose most of elements, including rare earth elements, from basalts dominates. Under on oxidizing environment, basalts accumulate many elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from Deep Sea Drilling Project Holes 501, 504B and 505B have an unusual near-vein zonation in basalts. Megascopically, zonation occurs as differently colored strips and zones whose typical thickness does not exceed 6 to 7 cm. Microscopically, the color of zones depends on variably colored clay minerals which are the products of low-temperature hydrothermal alteration in basalt. These differently colored zones form the so called "oxidative" type of alteration of basalts. Another "background," or, less precisely termed, "non-oxidative," type of alteration in basalts is characterized by large-scale, homogeneous replacement of olivine, and filling of vesicles and cracks by an olive-brown or olive-green clay mineral. The compositions of clay minerals of the "background" type of alteration, as well as the composition of co-existing titanomagnetites, were determined with an electron microprobe. There are sharp maxima in potassium and iron content, and minima in alumina, silica, and magnesia in clay minerals in the colored zones near veins. Coloring of clay and rock-forming minerals by iron hydroxides and a decrease of the amount of titanomagnetite, which apparently was the source of redeposited iron, occur frequently in colored zones. We assume that the large-scale "background" alteration in the basalts occurred under the effect of pore waters slowly penetrating through bottom sediments. Faulting can facilitate access of fresh sea water to basalts; thus above the general homogeneous background arise zones of "oxidative" alteration along fractures in basalts. The main factors controlling these processes are time (age of basalt), grain size, temperature, thickness of sedimentary cover, and heat flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the geochemical-petrological study of basalts recovered from DSDP Hole 504B (Leg 70) on the southern flank of the Costa Rica Rift, we investigated specially the relationships between the distribution and isotopic composition of sulfur of scattered and vein sulfides on the one hand, and the observed pattern and processes of secondary alterations on the other. The following groups of observations are essential: (1) variations in the contents and isotopic composition of sulfur of different forms of sulfides are clearly interrelated and are observed solely in porous horizons established on the basis of detailed geophysical experiments; (2) the enrichment of sulfides in the light sulfur isotope decreases from the upper to the lower horizons, and within horizons in the direction of the less-altered rock; (3) the increase of d34S values of scattered sulfides in individual permeable zones parallels a decrease in the degree of iron oxidation in the contents of crystallization water, and in the concentrations of Mg, K, and Li in the rock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.