942 resultados para Feature Point Detection
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
1st ASPIC International Congress
Resumo:
III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013
Resumo:
NanoPT 2014 International Conference, in Portugal, on February 12-14. Poster presentation based on topic Nanobio/Nanomedicine
Resumo:
Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013
Resumo:
Background: A new method for determining serum specific IgE (IMMULITE“ 2000 3gAllergy) has recently become available. Objective: To evaluate the clinical performance of IMMULITE 2000 in the diagnosis of cow’s milk allergy compared with that of UniCAP“. Additionally, we verified the behavior of both methods at two diagnostic decision points proposed by other authors. Methods: The study population consisted of 31 children with cow’s milk allergy (group A) and a control group of 19 atopic children without food allergy(group B). A blood sample from each child was tested using both methods and the results were compared. Results: In group A, the values for cow’s milk IgE ranged from 0.35 kU/L (the lowest common detection limit) to above 100 kU/L. In group B, the values were less than 1.1 kU/L for IMMULITE 2000 and less than 1.6 kU/L for UniCAP. An agreement of 90 % in IgE classes was obtained. Both methods demonstrated exactly the same diagnostic performance(sensitivity: 100 %; specificity: 78.9 %; negative predictive value: 100%; positive predictive value: 84.6%;efficiency: 90.2 %). The evaluation of the two methods at the two different decision points proposed in the literature showed a better positive predictive value with UniCAP, but we obtained equivalent performance with IMMULITE 2000 by choosing higher cutoff values. Conclusions: We conclude that IMMULITE 2000 is as effective as UniCAP in the diagnosis of cow’s milk allergy. Both methods can be used to obtain site-specific decision points that are population, age and disease dependent.
Resumo:
This work presents the integration of obstacle detection and analysis capabilities in a coherent and advanced C&C framework allowing mixed-mode control in unmanned surface systems. The collision avoidance work has been successfully integrated in an operational autonomous surface vehicle and demonstrated in real operational conditions. We present the collision avoidance system, the ROAZ autonomous surface vehicle and the results obtained at sea tests. Limitations of current COTS radar systems are also discussed and further research directions are proposed towards the development and integration of advanced collision avoidance systems taking in account the different requirements in unmanned surface vehicles.
Resumo:
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.
Resumo:
We have searched for Mycobacterium leprae DNA for 36kDa protein in urine using a M. leprae specific PCR technique. A limited number of 16 patients (of which 11 belonged to lepromatous leprosy and five to tuberculoid leprosy) and eight healthy individuals were included for the present study. The number of urine samples positive by PCR were 36.4% (4/11) in lepromatous patients and 40% (2/5) in tuberculoid patients. None of the samples from healthy individuals was positive. To our knowledge, the results indicate, for the first time, the presence of M. leprae DNA in urine from leprosy patients. Another important finding obtained out of the study is that amongst treated patients 66.6% (4/6) were positive whereas amongst untreated only 20% (2/10) were positive. From the present indicative data it appears that treatment improves the PCR results with urine as a sample. Thus, the approach could prove to be useful for monitoring the treatment response of individual patients and needs to be further evaluated with a large number of patients.
Resumo:
Since October 2001, the Adolfo Lutz Institute has been receiving vesicular fluids and scab specimens of patients from Paraíba Valley region in the São Paulo and Minas Gerais States and from São Patricio Valley, in the Goiás State. Epidemiological data suggested that the outbreaks were caused by Cowpox virus or Vaccinia virus. Most of the patients are dairy milkers that had vesiculo-pustular lesions on the hands, arms, forearms, and some of them, on the face. Virus particles with orthopoxvirus morphology were detected by direct electron microscopy (DEM) in samples of 49 (66.21%) patients of a total of 74 analyzed. Viruses were isolated in Vero cell culture and on chorioallantoic membrane (CAM) of embryonated chicken eggs. Among 21 samples submitted to PCR using primers for hemagglutinin (HA) gene, 19 were positive. Restriction digestion with TaqI resulted in four characteristic Vaccinia virus fragments. HA nucleotide sequences showed 99.9% similarity with Cantagalo virus, described as a strain of Vaccinia virus. The only difference observed was the substitution of one nucleotide in the position 616 leading to change in one amino acid of the protein in the position 206. The phylogenetic analysis showed that the isolates clustered together with Cantagalo virus, other Vaccinia strains and Rabbitpox virus.
Resumo:
Twenty-four whole blood and serum samples were drawn from an eight year-old heart transplant child during a 36 months follow-up. EBV serology was positive for VCA-IgM and IgG, and negative for EBNA-IgG at the age of five years old when the child presented with signs and symptoms suggestive of acute infectious mononucleosis. After 14 months, serological parameters were: positive VCA-IgG, EBNA-IgG and negative VCA-IgM. This serological pattern has been maintained since then even during episodes suggestive of EBV reactivation. PCR amplified a specific DNA fragment from the EBV gp220 (detection limit of 100 viral copies). All twenty-four whole blood samples yielded positive results by PCR, while 12 out of 24 serum samples were positive. We aimed at analyzing whether detection of EBV-DNA in serum samples by PCR was associated with overt disease as stated by the need of antiviral treatment and hospitalization. Statistical analysis showed agreement between the two parameters evidenced by the Kappa test (value 0.750; p < 0.001). We concluded that detection of EBV-DNA in serum samples of immunosuppressed patients might be used as a laboratory marker of active EBV disease when a Real-Time PCR or another quantitative method is not available.
Resumo:
XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015), III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.
Resumo:
Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.