978 resultados para Farm supply industries
Resumo:
主环二极铁电源是兰州重离子加速器冷却储存环(HIRFL-CSR)工程的关键设备和指标要求最高的一台电源,采用了独特的拓扑和控制策略。为满足峰值功率3.15MW(3kA,1.45kV)的输出能力和快脉冲要求,采用了晶闸管整流并联脉宽调制补偿单元的主电路拓扑结构和特殊的控制方式,这套综合方案确保电源满足了全部技术指标。本文介绍了该拓扑结构的原理和优势,讨论了为满足±2×10-4的跟踪误差的要求而采用的控制拓扑和双基准给定的原理,并简介了调试过程和近年来的运行和改进情况。
Resumo:
研制了兰州重离子加速器冷却储存环(HIRFL-CSR)二极磁铁电源,提出了一种基于晶闸管相控整流技术和IGBT脉宽调制(PWM)变换技术的同步加速器二极磁铁电源的设计方案,分析、仿真了其工作原理,并设计、生产了1套完整的电源样机。经现场试验、长期运行及测试,电流稳定度<±5×10-5/8h,跟踪精度<±2×10-4,电流纹波<1×10-5。该方案满足HIRFL-CSR二极磁铁对电源技术指标的要求。
Resumo:
The labilities of thorium fractions including mobility and bioavailability vary significantly with soil properties. The effects of soil pH and soil organic matter on the distribution and transfer of thorium fractions defined by a sequential extraction procedure were investigated. Decrease of soil pH could enhance the phytoavailability and the potential availability of thorium in soil. Increase of organic matter reduced the phytoavailability of thorium, but enhanced the potential availability of it.
Resumo:
The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r >= 0.916 7) and Elovich equation (R-2 >= 0. 898 0) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples.
Resumo:
In old China there were very few people engaged in the study of the algae, but in new China, freshwater and marine algae are studied by over one hundred old and new phycologists. There is now an algal biotechnology industry consisting of an aquaculture industry, producing large amounts of the seaweeds Laminaria, Porphyra, Undaria, Gracilaria, eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar and carrageenan; an industry producing chemicals and drugs, such as iodine, mannitol, phycocyanin, beta -carotene, PSS (propylene glycol alginate sulfate) and FPS (fucose-containing sulfated polysaccharides) and an industry producing food, feed and fertilizer. The Laminaria cultivation industry produces about 900,000 t dry Laminaria, probably the largest producer in the world and 13,000 t algin, undoubtedly one of the largest algin producer in the world.
Resumo:
A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.