974 resultados para Family resilience Q-set
Resumo:
Es presenta una sèrie de conceptes de semblança molecular quàtica i uns procediments associats de càlcul i representació gràfica dels resultats. Donada una sèrie de molècules es poden obtenir diversos tipus de gràfics que mostren les relacions entre elles. Com a exemple d'aplicació d'aquest procés s'estudia una família de drogues antitumorals
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature ofcompositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precisedefinition of composition. This is the aim of this oral contribution
Resumo:
In vascular plants, the endodermis establishes a protective diffusion barrier surrounding the vasculature preventing the passive, uncontrolled entry of nutrients absorbed by the plant. It does so by means of a differentiation feature, the "Casparian Strip" (CS), a highly localized cell wall impregnation made of lignin, which seals the extracellular space. Although the existence of this differentiation feature has been intensively described, the mechanisms establishing this hallmark remain obscure. In this work I report, the developmental sequence of events that leads to a differentiated endodermis, in the plant model Arabidopsis thaliana. In addition, my descriptive approach gave important insights as to how these cells define membrane domains involved in the directional transport of nutrients. I also participated in characterizing a new transmembrane protein family, the CASPs, localized to the membrane domain underlying the CS, which we accordingly named the Casparian Strip membrane Domain (CSD). Our molecular analysis indicates that these proteins drive CS establishment. To identify more molecular factors of CS establishment, I performed a forward genetic screen. This screen led to the identification of 11 endodermis permissive mutants, which we named schengen (sgn) mutants. The causative mutations have been mapped to 5 independent loci: SGN1 to SGN5. SGN1 and SGN3 encode Receptor Like Kinases involved in the correct establishment of the CSD. A lack of those kinases leads to an incomplete CSD, which gives rise to interrupted CS barriers. Interestingly, SGN1 seems to also regulate CSD positioning to the middle of endodermal transversal walls. SGN4 encodes an NADPH oxidase involved in lignin polymerization essential for CS formation. The sgn5 mutant induces extra divisions of cortical cells strongly affecting the cell identity, but also leading to incorrect differentiation. A thorough characterization of the sgn2 mutant will follow elsewhere, yet preliminary results indicate that SGN2 encodes an Acyl-CoA N-acyltransferase. . In summary, with my work I have contributed a first set of molecular players of Casparian strip formation and initiated their characterization. Eventually, this might lead to an understanding of the molecular mechanisms of CS establishment in A.thaliana . This in turn will hopefully help to better understand nutrient uptake in higher plants and their response to environmental stresses. - Au sein des plantes vasculaires, l'endoderme représente un tissu protecteur mettant en place une barrière imperméable, empêchant n'importe quel élément de rejoindre les tissus conducteurs par simple diffusion. Cette barrière, appelée « Cadre de Caspary », correspond à une lignification de la paroi de l'endoderme et donne lieu à un cloisonnement de l'espace intercellulaire. Bien que cet élément de différenciation soit décrit en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements aboutissant à l'établissement du cadre de Caspary chez la plante modèle Arabidopsis thaliana. De plus, ce travail apporte de nouvelles connaissances expliquant comment ces cellules définissent des domaines membranaires importants pour le transport des nutriments. Nous décrivons une nouvelle famille de protéines membranaires, les CASPs (« CAparian Strip membrane domain Proteins »), localisées dans un domaine membranaire longeant le cadre de Caspary : le domaine de Caspary (CSD). L'analyse moléculaire des CASPs indique qu'elles dirigent la formation du cadre de Caspary. Par ailleurs, une approche génétique directe nous a permis d'identifier 11 mutants ayant un endoderme perméable. Nous avons nommé ces mutants Schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) qui participent à la délimitation du CSD. L'absence de ces kinases aboutit à un domaine CSD incomplet, se traduisant par un cadre de Caspary discontinu. De plus, SGN1 semble réguler le positionnement du CSD au milieu de la paroi transversale de l'endoderme. SGN4 produit une enzyme de type NADPH oxydase impliquée dans la polymérisation du cadre de Caspary. Dans le mutant sgn5, on observe une division anormale des cellules du cortex créant ainsi une nouvelle couche cellulaire incapable d'achever sa différenciation en endoderme. Quant à la mutation sgn2, bien que nous pensons qu'elle affecte une Acyl-CoA N-acyltransferase, sa caractérisation ne sera réalisée que prochainement. Au final, ce travail procure de nouveaux éléments sur l'établissement du cadre de Caspary qui pourraient être importants afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles. - De par leur immobilité, les plantes terrestres n'ont pas d'autre choix que de puiser leurs ressources dans leur environnement direct. La plante extrait du sol les nutriments qui lui sont nécessaires et les redistribue grâce à des tissus conducteurs. Afin de ne pas s'intoxiquer, il est donc essentiel de pouvoir sélectionner les éléments entrant dans la racine. Etonnement, ce n'est pas la surface des racines qui permet ce contrôle mais un tissu interne appelé endoderme. Ce dernier forme une barrière imperméable qui entoure chaque cellule et crée une jointure permettant de bloquer le passage des éléments entre les cellules. Cette structure, appelée « cadre de Caspary », oblige les éléments à entrer dans les cellules de l'endoderme et à être ainsi sélectionnés. Bien que cette structure soit décrite en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements qui aboutit à la formation du cadre de Caspary chez la plante modèle Arabidopsis thaliana. Ce travail apporte également de nouvelles connaissances expliquant comment ces cellules définissent, organisent et dirigent le transport des nutriments. Nous décrivons comment certains éléments de la cellule, les protéines CASPs (CAsparian Strip membrane domain Proteins), sont organisées un domaine particulier des membranes afin de créer une plateforme de construction longeant le cadre de Caspary : le domaine de Caspary (CSD). Afin de déterminer ce qu'il se passerait si une plante ne possédait pas de cadre de Caspary, nous avons réalisé une mutagénèse, ou approche génétique directe, et identifié 11 mutants (individu ayant un gène défectueux conduisant à la perte d'une fonction) ayant un endoderme perméable. Nous avons nommé ces mutants schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. Les gènes SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) servant à l'établissement de la plateforme de construction. L'absence de ces kinases aboutit à une base incomplète, se traduisant par un cadre de Caspary discontinu. Qui plus est, la kinase SGN1 semble réguler le positionnement de la plateforme au milieu de l'endoderme. Le gène SGN4 est par contre, impliqué dans la construction à proprement dite du cadre de Caspary. Dans le mutant sgn5, on observe une nouvelle couche de cellules ressemblant à de l'endoderme mais incapable de former correctement une barrière identique au cadre de Caspary. Quant au dernier mutant, sgn2, bien que cette étude fournisse des indices permettant de comprendre pourquoi le mutant sgn2 est défectueux, nous n'expliquerons ce cas que prochainement. En résumé, ce travail procure de nouvelles connaissances sur l'établissement du cadre de Caspary qui pourraient être importantes afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles.
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
There are no validated criteria for the diagnosis of sensory neuronopathy (SNN) yet. In a preliminary monocenter study a set of criteria relying on clinical and electrophysiological data showed good sensitivity and specificity for a diagnosis of probable SNN. The aim of this study was to test these criteria on a French multicenter study. 210 patients with sensory neuropathies from 15 francophone reference centers for neuromuscular diseases were included in the study with an expert diagnosis of non-SNN, SNN or suspected SNN according to the investigations performed in these centers. Diagnosis was obtained independently from the set of criteria to be tested. The expert diagnosis was taken as the reference against which the proposed SNN criteria were tested. The set relied on clinical and electrophysiological data easily obtainable with routine investigations. 9/61 (16.4 %) of non-SNN patients, 23/36 (63.9 %) of suspected SNN, and 102/113 (90.3 %) of SNN patients according to the expert diagnosis were classified as SNN by the criteria. The SNN criteria tested against the expert diagnosis in the SNN and non-SNN groups had 90.3 % (102/113) sensitivity, 85.2 % (52/61) specificity, 91.9 % (102/111) positive predictive value, and 82.5 % (52/63) negative predictive value. Discordance between the expert diagnosis and the SNN criteria occurred in 20 cases. After analysis of these cases, 11 could be reallocated to a correct diagnosis in accordance with the SNN criteria. The proposed criteria may be useful for the diagnosis of probable SNN in patients with sensory neuropathy. They can be reached with simple clinical and paraclinical investigations.
Resumo:
This paper describes a new reliable method, based on modal interval analysis (MIA) and set inversion (SI) techniques, for the characterization of solution sets defined by quantified constraints satisfaction problems (QCSP) over continuous domains. The presented methodology, called quantified set inversion (QSI), can be used over a wide range of engineering problems involving uncertain nonlinear models. Finally, an application on parameter identification is presented
Resumo:
The aim of this work was to establish a modified pre-diagnostic polymerase chain reaction (PCR) protocol using a single primer set that enables successful amplification of a highly conserved mammalian sequence in order to determine overall sample DNA quality for multiple mammalian species that inhabit areas endemic for leishmaniasis. The gene encoding interphotoreceptor retinoid-binding protein (IRBP), but not other conserved genes, was efficiently amplified in DNA samples from tail skin, ear skin, bone marrow, liver and spleen from all of the species tested. In tissue samples that were PCR-positive for Leishmania, we found that DNA from 100%, 55% and 22% of the samples tested resulted in a positive PCR reaction for the IRBP, beta-actin and beta-globin genes, respectively. Nucleotide sequencing of an IRBP amplicon resolved any questions regarding the taxonomical classification of a rodent, which was previously based simply on the morphological features of the animal. Therefore, PCR amplification and analysis of the IRBP amplicon are suitable for pre-diagnostically assessing DNA quality and identifying mammalian species living in areas endemic to leishmaniasis and other diseases.
Resumo:
The genomic architecture of the 10q22q23 region is characterised by two low-copy repeats (LCRs3 and 4), and deletions in this region appear to be rare. We report the clinical and molecular characterisation of eight novel deletions and six duplications within the 10q22.3q23.3 region. Five deletions and three duplications occur between LCRs3 and 4, whereas three deletions and three duplications have unique breakpoints. Most of the individuals with the LCR3-4 deletion had developmental delay, mainly affecting speech. In addition, macrocephaly, mild facial dysmorphisms, cerebellar anomalies, cardiac defects and congenital breast aplasia were observed. For congenital breast aplasia, the NRG3 gene, known to be involved in early mammary gland development in mice, is a putative candidate gene. For cardiac defects, BMPR1A and GRID1 are putative candidate genes because of their association with cardiac structure and function. Duplications between LCRs3 and 4 are associated with variable phenotypic penetrance. Probands had speech and/or motor delays and dysmorphisms including a broad forehead, deep-set eyes, upslanting palpebral fissures, a smooth philtrum and a thin upper lip. In conclusion, duplications between LCRs3 and 4 on 10q22.3q23.2 may lead to a distinct facial appearance and delays in speech and motor development. However, the phenotypic spectrum is broad, and duplications have also been found in healthy family members of a proband. Reciprocal deletions lead to speech and language delay, mild facial dysmorphisms and, in some individuals, to cerebellar, breast developmental and cardiac defects.
Resumo:
An apparent incompatibility between mother and child in the plasminogen system has been clarified by the demonstration of a silent allele in the family.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
Members of the leucine-rich repeat protein family are involved in diverse functions including protein phosphatase 2-inhibition, cell cycle regulation, gene regulation and signalling pathways. A novel Schistosoma mansoni gene, called SmLANP, presenting homology to various genes coding for proteins that belong to the super family of leucine-rich repeat proteins, was characterized here. SmLANP was 1184bp in length as determined from cDNA and genomic sequences and encoded a 296 amino acid open reading frame that spanning from 6 to 894bp. The predicted amino acid sequence had a calculated molecular weight of 32kDa. Analysis of the predicted sequence indicated the presence of 3 leucine-rich domains (LRR) located in the N-terminal region and an aspartic acid rich region in the C-terminal end. SmLANP transcript is expressed in all stages of the S. mansoni life cycle analyzed, exhibiting the highest expression level in males. The SmLANP protein was expressed in a GST expression system and antibodies raised in mice against the recombinant protein. By immunolocalization assay, using adult worms, it was shown that the protein is mainly present in the cell nucleus through the whole body and strongly expressed along the tegument cell body nuclei of adult worms. As members of this family are usually involved in protein-protein interaction, a yeast two hybrid assay was conducted to identify putative binding partners for SmLANP. Thirty-six possible partners were identified, and a protein ATP synthase subunit alpha was confirmed by pull down assays, as a binding partner of the SmLANP protein.
Resumo:
Introduction The Andalusian Public Health System Virtual Library (Biblioteca Virtual del Sistema Sanitario Público de Andalucía, BV-SSPA) was set up in June 2006. It consists of a regional government action with the aim of democratizing the health professional access to quality scientific information, regardless of the professional workplace. Andalusia is a region with more than 8 million inhabitants, with 100,000 health professionals for 41 hospitals, 1,500 primary healthcare centres, and 28 centres for non-medical attention purposes (research, management, and educational centres). Objectives The Department of Development, Research and Investigation (R+D+i) of the Andalusian Regional Government has, among its duties, the task of evaluating the hospitals and centres of the Andalusian Public Health System (SSPA) in order to distribute its funding. Among the criteria used is the evaluation of the scientific output, which is measured using bibliometry. It is well-known that the bibliometry has a series of limitations and problems that should be taken into account, especially when it is used for non-information sciences, such us career, funding, etc. A few years ago, the bibliometric reports were done separately in each centre, but without using preset and well-defined criteria, elements which are basic when we need to compare the results of the reports. It was possible to find some hospitals which were including Meeting Abstracts in their figures, while others do not, and the same was happening with Erratum and many other differences. Therefore, the main problem that the Department of R+D+i had to deal with, when they were evaluating the health system, was that bibliometric data was not accurate and reports were not comparable. With the aim of having an unified criteria for the whole system, the Department of R+D+i ordered the BV-SSPA to do the year analysis of the scientific output of the system, using some well defined criteria and indicators, among whichstands out the Impact Factor. Materials and Methods As the Impact Factor is the bibliometric indicator that the virtual library is asked to consider, it is necessary to use the database Web of Science (WoS), since it is its owner and editor. The WoS includes the databases Science Citation Index (SCI), Social Sciences Citation Index (SSCI) and Arts & Humanities Citation Index. To gather all the documents, SCI and SSCI are used; to obtain the Impact Factor and quartils, it is used the Journal Citation Reports, JCR. Unlike other bibliographic databases, such us MEDLINE, the bibliometric database WoS includes the address of all the authors. In order to retrieve all the scientific output of the SSPA, we have done general searches, which are afterwards processed by a tool developed by our library. We have done nine different searches using the field ‘address’; eight of them including ‘Spain’ and each one of the eight Andalusian Regions, and the other one combining ‘Spain’ with all those cities where there are health centres, since we have detected that there are some authors that do not use the region in their signatures. These are some of the search strategies: AD=Malaga and AD=Spain AD=Sevill* and AD=Spain AD=SPAIN AND (AD=GUADIX OR AD=BAZA OR AD=MOTRIL) Further more, the field ‘year’ is used to determine the period. To exploit the data, the BV-SSPA has developed a tool called Impactia. It is a web application which uses a database to store the information of the documents generated by the SSPA. Impactia allows the user to automatically process the retrieved documents, assigning them to their correspondent centres. In order to do the classification of documents automaticaly, it was necessary to detect the huge variability of names of the centres that the authors use in their signatures. Therefore, Impactia knows that if an author signs as “Hospital Universitario Virgen Macarena”, “HVM” or “Hosp. Virgin Macarena”, he belongs to the same centre. The figure attached shows the variability found for the Empresa Publica Hospital de Poniente. Besides the documents from WoS, Impactia includes the documents indexed in Scopus and in other databases, where we do bibliographic searches using similar strategies to the later ones. Aware that in the health centres and hospitals there is a lot of grey literature that is not gathered in databases, Impactia allows the centres to feed the application with these documents, so that all the SSPA scientific output is gathered and organised in a centralized place. The ones responsible of localizing this gray literature are the librarians of each one of the centres. They can also do statements to the documents and indicators that are collected and calculated by Impactia. The bulk upload of documents from WoS and Scopus into Impactia is monthly done. One of the main issues that we found during the development of Impactia was the need of dealing with duplicated documents obtained from different sources. Taking into account that sometimes titles might be written differently, with slashes, comas, and so on, Impactia detects the duplicates using the field ‘DOI’ if it is available or comparing the fields: page start, page end and ISSN. Therefore it is possible to guarantee the absence of duplicates. Results The data gathered in Impactia becomes available to the administrative teams and hospitals managers, through an easy web page that allows them to know at any moment, and with just one click, the detailed information of the scientific output of their hospitals, including useful graphs such as percentage of document types, journals where their scientists usually publish, annual comparatives, bibliometric indicators and so on. They can also compare the different centres of the SSPA. Impactia allows the user to download the data from the application, so that he can work with this information or include them in their centres’ reports. This application saves the health system many working hours. It was previously done manually by forty one librarians, while now it is done by only one person in the BV-SSPA during two days a month. To sum up, the benefits of Impactia are: It has shown its effectiveness in the automatic classification, treatment and analysis of the data. It has become an essential tool for all managers to evaluate quickly and easily the scientific production of their centers. It optimizes the human resources of the SSPA, saving time and money. It is the reference point for the Department of R+D+i to do the scientific health staff evaluation.