910 resultados para FREEPLAY NONLINEARITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paradigm shift from traditional print literacy to the postmodern fragmentation, nonlinearity, and multimodality of writing for the Internet is realized in Gregory L. Ulmer’s electracy theory. Ulmer’s open invitation to continually invent the theory has resulted in the proliferation of relays, or weak models, by electracy advocates for understanding and applying the theory. Most relays, however, remain theoretical rather than practical for the writing classroom, and electracy instruction remains rare, potentially hindering the theory’s development. In this dissertation, I address the gap in electracy praxis by adapting, developing, and remixing relays for a functional electracy curriculum with first-year writing students in the Virginia Community College System as the target audience. I review existing electracy relays, pedagogical applications, and assessment practices – Ulmer’s and those of electracy advocates – before introducing my own relays, which take the form of modules. My proposed relay modules are designed for adaptability with the goals of introducing digital natives to the logic of new media and guiding instructors to possible implementations of electracy. Each module contains a justification, core competencies and learning outcomes, optional readings, an assignment with supplemental exercises, and assessment criteria. My Playlist, Transduction, and (Sim)ulation relays follow sound backward curricular design principles and emphasize core hallmarks of electracy as juxtaposed alongside literacy. This dissertation encourages the instruction of new media in Ulmer’s postmodern apparatus in which student invention via the articulation of fragments from various semiotic modes stems from and results in new methodologies for and understandings of digital communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the effect of two distinct discrete delays on the dynamics of a Wilson-Cowan neural network. This activity based model describes the dynamics of synaptically interacting excitatory and inhibitory neuronal populations. We discuss the interpretation of the delays in the language of neurobiology and show how they can contribute to the generation of network rhythms. First we focus on the use of linear stability theory to show how to destabilise a fixed point, leading to the onset of oscillatory behaviour. Next we show for the choice of a Heaviside nonlinearity for the firing rate that such emergent oscillations can be either synchronous or anti-synchronous depending on whether inhibition or excitation dominates the network architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates we use a mixture of numerical bifurcation analysis and direct simulations, and uncover parameter windows that support chaotic behaviour. Finally we comment on the role of delays in the generation of bursting oscillations, and discuss natural extensions of the work in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo tiene como objetivo la mejora en la validación de la simulación numérica del flujo bifásico característico del transporte de lecho fluido, mediante la formulación y desarrollo de un modelo numérico combinado Volúmenes Finitos - Elementos Finitos. Para ello se simula numéricamente el flujo de mezcla sólido-gas en una Cámara de Lecho Fluido, bajo implementación en código COMSOL, cuyos resultados son mejores comparativamente a un modelo basado en el método de Elementos Discretos implementado en código abierto MFIX. El problema fundamental de la modelización matemática del fenómeno de lecho fluido es la irregularidad del dominio, el acoplamiento de las variables en espacio y tiempo y, la no linealidad. En esta investigación se reformula apropiadamente las ecuaciones conservativas del fenómeno, tales que permitan obtener un problema variacional equivalente y solucionable numéricamente. Entonces; se define una ecuación de estado en función de la presión hidrodinámica y la fracción volumétrica de sólidos, quedando desacoplado el sistema en tres sub-problemas, garantizando así la existencia de solución del problema general. Una vez aproximados numéricamente ambos modelos, se comparan los resultados de donde se observa que el modelo materia del presente artículo, verifica de forma más eficaz las condiciones de mezcla óptima, reflejada en la calidad del burbujeo y velocidad de mezcla.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many tissue level models of neural networks are written in the language of nonlinear integro-differential equations. Analytical solutions have only been obtained for the special case that the nonlinearity is a Heaviside function. Thus the pursuit of even approximate solutions to such models is of interest to the broad mathematical neuroscience community. Here we develop one such scheme, for stationary and travelling wave solutions, that can deal with a certain class of smoothed Heaviside functions. The distribution that smoothes the Heaviside is viewed as a fundamental object, and all expressions describing the scheme are constructed in terms of integrals over this distribution. The comparison of our scheme and results from direct numerical simulations is used to highlight the very good levels of approximation that can be achieved by iterating the process only a small number of times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oscillations presents in control loops can cause damages in petrochemical industry. Canceling, or even preventing such oscillations, would save up to large amount of dollars. Studies have identified that one of the causes of these oscillations are the nonlinearities present on industrial process actuators. This study has the objective to develop a methodology for removal of the harmful effects of nonlinearities. Will be proposed an parameter estimation method to Hammerstein model, whose nonlinearity is represented by dead-zone or backlash. The estimated parameters will be used to construct inverse models of compensation. A simulated level system was used as a test platform. The valve that controls inflow has a nonlinearity. Results and describing function analysis show an improvement on system response

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambient mechanical vibrations have emerged as a viable energy source for low-power wireless sensor nodes aiming the upcoming era of the ‘Internet of Things’. Recently, purposefully induced dynamical nonlinearities have been exploited to widen the frequency spectrum of vibration energy harvesters. Here we investigate some critical inconsistencies between the theoretical formulation and applications of the bistable Duffing nonlinearity in vibration energy harvesting. A novel nonlinear vibration energy harvesting device with the capability to switch amidst individually tunable bistable-quadratic, monostable-quartic and bistable-quartic potentials has been designed and characterized. Our study highlights the fundamentally different large deflection behaviors of the theoretical bistable-quartic Duffing oscillator and the experimentally adapted bistable-quadratic systems, and underlines their implications in the respective spectral responses. The results suggest enhanced performance in the bistable-quartic potential in comparison to others, primarily due to lower potential barrier and higher restoring forces facilitating large amplitude inter-well motion at relatively lower accelerations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo exploratorio estudia al movimiento político Mesa de la Unidad Democrática (MUD), creada con el fin de oponerse la Gobierno socialista existente en venezuela. La crítica que este documento realiza, parte desde el punto de vista de la Ciencia de la Complejidad. Algunos conceptos clave de sistemas complejos han sido utilizados para explicar el funcionamiento y organización de la MUD, esto con el objetivo de generar un diagnóstico integral de los problemas que enfrenta, y evidenciar las nuevas percepciones sobre comportamientos perjudiciales que el partido tiene actualmente. Con el enfoque de la complejidad se pretende ayudar a comprender mejor el contexto que enmarca al partido y, para, finalmente aportar una serie de soluciones a los problemas de cohesión que presen