979 resultados para FASTIGIAL NUCLEUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main facts presented in this paper may be summarized as follows: 1) Corizus (Liorhyssus) hyalinus (Fabr.) has primary spermatocytes provided with 6 autosomal tetrads, one pair of microchromosomes and one sex chromosome. 2) The two microchromosomes present in this species sometimes appear at the primary metaphase as an unequal pair of minute elements. In the secondary spermatocytes the unique microchromosome present may be in the limit of visibility or entirely invisible. This invisibility may be partly due to a loss of colourability. 3) The sex chromosome divides transversely in the first division of the spermatocyte, passing undivided to one pole in the second one. In the latter it becomes fusiform in the beginning of anaphase revealing in this manner its dicentricity. In late anaphase it finishes by passing to one pole leaving in the other pole one of its kinetochores sometimes accompanied by a chromosomal fragment. 4) All the chromosomes divide transversely in both divisions, a diagram being enclosed to elucidate the question. 5) Spermatogonial chromosomes are provided with one kinetochore at each end, being curved toward the poles since the most beginning anaphase. 6) The following hypothesis is presented as an essay to explain the origin of microchromosomes: Since microchromosomes parallel sex chromosomes in most respects, as for instances in heteropycnosis and pairing modus, it seems highly probable that they originate from sex chromosomes. One may suppose that the ancestral form of a given species had a sex chromosome which used to lose a small centric fragment when it divided during meiosis. This fragment might well be at first an unstable one. Later, to compensate the effects of such a deficiency a mechanism arose through evolution which produced two useful results : a) the establishment of the fragment as a permanent structure of the cell nucleus and b) the acquirement by the sex chromosome of the faculty of passing to one pole without losing any of its ends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particular aspects of the meiosis of two species of Hemiptera, namely Megalotomus pallescens (Stal) (Coriscidae) and Jadera sanguinolenta (Fabr.); (Corizidae) are described and discussed in this paper. Megalotomus pallescens This species has primary spermatocytes provided with 7 autosomal tetrads plus a single sex chromosome. The X is smaller than the autosomes and may be found either in the periphery of the circle formed by the autosomal tetrads or in the center together with the m-tetrad which always occupies this position. The X chromosome - In the primary spermatocytes this element, which is tetradiform, orients itself parallelly to the spindle axis and divides transversely by its median constriction. In the secondary spermatocytes it passes undivided to one pole. The m-chromosomes - These chromosomes have been frequently found in close association with the sex chromosome in nuclei wich have passed the diffuse stage, a fact which was considered as affording some evidence in support of the idea /developed by the present writer in another paper with regard to the origin of the m-chromosomes from the sex chromosome. Formation of tetrads - Tetrads appear at first as irregular areas of reticular structure, becoming later more and more distinct. Then, two chromosomal strands very loose and irregular in outline, connected whit each other by several transverse filaments, begin to develop in each area. Growing progressively shorter, thicker and denser, these strands soon give origin to typical Hemiptera tetrads. Jadera sanguinolenta Spermatogonia of this species have 13 chromosomes, that is, 10 autosomes, 2 m-chromosomes and one sex chromosome, one pair of autosomes being much larger than the rest. Chromosomes move toward the poles with both ends looking to them. Primary spermatocytes show 6 tetrads and a single X. The sex chromossome in the first division of the spermatocytes divides as if it was a tetrad, passing undivided to one pole in the second division. In the latter it does not orient, being found anywhere in the cells. Its most common situation in anaphase corresponds therefore to precession. Tetrads are formed here in an entirely different way : the bivalents as they become distinct in the nuclei which came out. of the diffuse stage they appear in form of two thin threads united only at the extremities, an aspect which may better be analized in the larger bivalent. Up from this stage the formation of the tetrads is a mere process of shortening and thickening of both members of the pair. Due to the fact that the paired chromosomes are well separated from each other throughout their entire lenght, the author concluded that chiasmata, if present, are accumulated at the very ends of the bivalents. If no chiasmata have been at all formed, then, what holds together the corresponding extremities must be a strong attraction developed by the kinetochores. If one interprets the bivalents represented in the figures 17-21 as formed by four chromatids paired by one of the ends and united by the opposite one, then the question of the diffuse attachment becomes entirely disproved since it is exactly by the distal extremities that the tetrads later will be connected with the poles. In the opinion of the present writer the facts referred to above are one of the best demonstration at hand of the continuity of the paired threads and at the same time of the dicentricity of Hemiptera chromosomes. In view of the data hitherto collected by the author the behavior of the sex chromosome of the Hemiptera whose males are of the XO type may be summarized as follows: a) The sex chromosome in the primary metaphase appears longitudinally divided, without transverse constriction. It is oriented with the extremities in the plane of the equator and its chromatids separate by the plane of division. (Euryophthalmus, Protenor). In the second division the sex chromosome, provided as it is with an active kinetochore at each end, orients itself with its lenght parallelly to the spindle axis and passes undivided to one pole (Protenor?), or loses to the other pole a centric end (Euryophthalmus) In the latter case it has to become dicentric by means of a longitudinal spliting beginning at the kinetochore. b) The sex chromosome in the primary metaphase is tetradiform, that is, it is provided with a longitudinal split and a median transverse constriction. Orients with its length paral lelly to the spindle axis (what is probably due to the kinetochores being not yet divided) and divides transversely. (Corizas hyalinus, Megalotomus pallescens). in the secondary metaphase the sex chromosome which turned to be dicentric in consequence of a longitudinal spliting initiated in the kineto chore, orients perpendicularly to the equatorial plane and without losing anyone of its extremities passes undivided to one pole (Megalotomus). Or, distending between both poles passes to one side, in which case it loses one of its ends to the other side. (Corizas hyalinus). c) The very short sex chromosome in the first division of the spermatocytes orients in the same manner aa the tetrads and divides transversely. In the second division, due to the inactivity o the inetochore, it remains monocentric and motionless anywhere in the cell, finishing by being enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity at the same time as the autosomal chromatids. (Jadera sanguinolenta, Diactor bilineatus). d) The sex chromosome in the first division orients in the equador with its longitudinal axis parallelly to the spindle axis passing integrally to one pole or, distending itself between the anaphase plates, loses one of its ends to the opposite pole. In this case it becomes dicentric in the prometaphase of the second division, behaving in this division as the autossomes. It thus divides longitudnally. (Pachylis laticomis, Pachylis pharaonis).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lutosa brasiliensis, an Orthopteran Tettigonioidean belonging to the family Stenopelmatidae is referred to in this paper The spermatogonia are provided with 15 chromosomes, that is, 7 pairs of autosomes and a single sex chromosome. One pair of autosomes is much larger than the rest, two pairs are of median sized elements, and four pairs are of small ones. The daughter sex chromosomes show at anaphase great difficulty in reaching the poles, being left for a long while in the region of the equator where they are seen stretched one after the other on the same line or lying side by side in different positions. When the spermatogonium divides each daughter cell gets passively its sex chromosome. Though slowly, the sex chromosome finishes by beins enclosed in the nucleus. Its behavior may be attributed to a very weak kinetic activity of the centromere. In view of se pronouced an inertness of the sex chromosomes, two things may be expected : primary spermatocyte nuclei with two sex chromosomes, and primary spermatocytes with the sex chromosome lying outside the nucleus. Both situations have been discovered. The latter, together with the delay of the spermatogonial sex chromosome in reaching the poles suggested to the anther the mechanism which might have given origin to the cases in which the sex chromosome normally does not enter the nucleus to rejoin the autosomes, remaning outside in its own nucleus. It may well be supposed that accidents like that found in the present individual have turned to be a normal event in the course of the evolution of some species. Trie primary spermatocytes are provided with chromatoid bodies which remain visible all over the whole history of the cells and pass to one of the resulting secondary spermatocytes, the larger of them being found later in the area occupied by the tails of the spermatozoa. No relation of these bodies to nucleoli con?d be established. Pachytene and diplotene nuclei are normal Metaphase nuclei show 7 autosomal tetrads, one of which being much larger than the rest. At this stage the chromosomes have a pronounced tendency to form clumps. Even when they are separated from each other they generally appear competed by chromosomal substance. The sex chromosome Hes always in one of the poles, being enclosed in the nucleus formed there. The stickness of the chromosomes can also be noted at anaphase. Telophase chromosomes distend them- selves for giving origin to secondary spermatocyte nuclei in a state comparable to a beginning prophase. As the secondary spermatocytes approach metaphase the autosomes appear entirely divided except at the kinetochore where the chromatids remain united. In the division of the secondary spermatocytes nothing else merits special reference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three species studied have 19 chromosomes, being one heterochromosome, one pair of microchromosomes and 8 pairs of autosomes. The microchromosomes of Hypselonotus fulvus are amongst the largest we know. During the synizesis, in Hypselonotus fulvus, we can see in several strands that scape from the chromatic knot a place in which they are widley open. As, in that phase the chromosomes have both ends converging to the same place, the openings suggest a side-to-side pairing of the chromosomal threads. The tetrads are like that studied by Piza (1945-1946). The bivalents are united side by side at their entire length. The unpaired part at the midle of the bivalents gives origin to the arms of the cross-shapede tetrads. The chromosomes have a kinetochore at each end. The bivalents sometimes unite their extremities to form ring-shaped figures, which open themselves out before metaphase. The tetrads are oriented parallelly to the spindle axis. At telophase the kinetochores repeli one another, the chiasmata, if present, slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore through the pairing plane. In the spermatogonial anaphase of Hypselonotus subterpunctatus the chromosomes are curved to the poles, like those described by PIZA (1946) and PIZA and ZAMITH (1946). The sex chromosomes in Hypselonotus interruptus and Hypselonotus fulvus appears longitudinally divided. It is oriented with the ends in the plane of the equator and its chomatids separate by the plane of division. In the second division the sex chromosome, provided as it is with an actve klnetochore at each end, orients itself with its length parallelly to the spindle axis and passes undivided to one pole. Sometimes it is distended between the poles. This corresponds to case (a) established by PIZA (1946) for the sex chromosomes of Hemiptera In Hypselonotus subterpunctatus the sex chromosome, in the first division of the spermatocytes, orients like the tetrads and divides transversaly. In the second division, as its kinetochore becomes inactive, it remans monocentric, does not orient in the spindle, and is finally enclosed in the nearer nucleus. In the secondary telophase it recuperates its dicentricity like the autosomal chromatids. This behavior corresponds to case (c) of PIZA (1946).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper the behaviour of the chromosomes in the spermatogenesis of the Myriapod Rhinocricus Padbergi Verhoeff, 1938 is studied. The primary spermatocytes are provided with 10 independent bivalents which separate normally giving rise to equivalent secondary spermatocytes. No indication of sex chromosomes has been found. Fusion of two bivalents or of four, two by two, has been observed, giving origin to secondary spermatocytes with 9 and 8 chromosomes respectively, in which fused chromosomes could be discovered. For analysing the facts the chomosomes of both, primary and secondary metaphases were separately counted from a total of 190 celis of four individuals and statistically treted. The X2-test gave insignificant results. Twenty chomosomes were counted in somatic tissues. The heterochròmatic parts of the leptotene threads were usually arranged in the periphery of the nucleus. In resting nuclei chromocenters can be observed in varyng number. Their chromosomal nature is revealed by the fact that when treated by KCÑ or KNOS they begin uncoiling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triatomines are hematophagous bugs of medical interest in South and Central America, where they may act as invertebrate hosts of the hemoflagellate protozoa Trypanosoma cruzi (the causative of Chagas’ disease) and Trypanosoma rangeli (Tejera, 1920). Triatomines of Rhodnius genus have salivary gland formed by two close and independent units: the principal and the accessory. This gland secretes saliva that abounds in substances that facilitate and permit feeding. Despite this importance, there are few reports on its cytochemistry. In purpose of amplifying this understanding, in this work it was investigated the nuclear structures (chromatin and nucleolar corpuscles) of salivary gland cells of Rhodnius neglectus (Lent, 1954) and Rhodnius prolixus (Stål, 1859). The salivary glands were removed from adult insects, fixed and submitted to different cytochemical methods: lacto-acetic orcein, silver ion impregnation, Feulgen reaction, Toluidine Blue, Variant method of critical electrolyte concentration and C-banding. The results evidenced predominance of binucleated cells, with bulky and polyploid nucleus, decondensed chromatin and a large nucleolar area. In addition, cytoplasmic metachromasy and a clear association between nucleolar and heterochromatic corpuscles were observed. Such characteristics were associated with intense synthesis activity to produce saliva. Besides, the heterochromatic corpuscles observed with C Banding permitted the differentiation of sexes and species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated, in the liver and the spleen of ten pures cases of ankylostomiasis haemocytopoietic elements. We verified the weight of spleen in 23 cases of individuals from 3 to 60 years old. In no case did we meet with haemopoietic cells in liver. In seven cases we found in spleen elements of the red series at an advanced evolutional stage (orthochromatic erythroblasts with pyknotic nucleus). In some of these cases we observed megakaryocytes and numerous eosinophilous myelocytes.The three cases which did not show any myeloid metaplasia in spleen were from individuals of over 50 years. Nevertheless, in another case of an individual 59 years old this metaplasia was verified. In individuals of over 20 years, the average weight of spleen in nine cases appeared to be equal to the normal weight. In 14 other cases, between 3 and 14 years of age, the weight of this organ was always sensibly higher than in normal individuals of the corresponding age. These results suggest the possibility of the myeloid metaplasia being the fact responsible for the weight increase of spleen in young individuals victimatized by hookworm anaemia. The remarkable proliferation of orthochromatic erythroblasts shows that the degree and quickness of blood regeneration after iron administration are due, essentially, to the great quantity of haemoglobin previously formed in the spleen and bone marrow of ankylostomized organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Definite hyperplasia of cells occurs in the skin lesions of the infectious myxoma of rabbits, more visible in such stages in which the intercellular basophilic substance is rather scanty (fig. 2). The increase in number of cells is the result of simplified forms of mitosis (modified type of mitosis, pseudoamitosis) which might readily be mistaken for amitosis in their final stages. Budding (figs. 20, 28, 29, 30) as well as constriction of the nucleus (figs. 18, 31, 32), and the formation of giant-cells (figs. 33, 34) are not rare. During the entire process the nuclear membrane does not desintegrate as in typical mitosis. Division of the cytoplasm following division of the nucleus has been demonstrated (fig. 17). Typical mitosis is practically absent. The cells which undergo hyperplasia present remarkable changes in their dimension, shape, and structure. The nucleus and cell-body are considerably enlarged (figs. 6, 7, 8). The shape of the nucleus is modified (figs. 8, 10, 15). Hypertrophy of nuclein, either as an intranuclear network (spireme?, figs. 9, 23), or in the form conspicuous, deeply staining masses which appear not to be homogeneous but to be composed of small particles closely clumped ("mulberries"?, figs. 12, 13, 14, 25, 26) occurs in most cells. While some of these pictures are probably related to necrosis of the cells as started by most of the previous workers, it is lekely that some of them may represent developmental stages of the modified mitosis (pseudoamitosis) here reported. In fact, fine cytological details not ordinarily preserved in necrotic cells (figs. 35, 36, 37) may be demonstrated in the socalled myxoma-cells subtted to approved cytological methods of study (fixation in B-15 and P. F. A.-3, staining in iron-hematoxylin).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After the observation of many thousands of histological sections of the endocervical mucosa it became evident that its columnar cells present a great variety of aspects not only those of the surface of the canal but also those of the glands. A classification of these cells was made taking into account the staining affinity, the intensity staining of the cytoplasm, the presence or absence of cilia, the shape and location of the nucleus. The various combinations of these different data made possible the characterization of 26 types of cells which we labelled by the alphabetical letters. Two hundred and fifty cervices obtained by cervical amputation and by hysterectomy were studied. The uteri presented lesions in the course of routine laboratory examination. In each of the 250 histological sections there were specifically counted 2,000 columnar cells which cover the cervical canal and 2,000columnar cells which form the glands. A graphic representation of the frequency of both the superficial and glandular columnar cells was presented; this was given the name EPITHELIOGRAM. The variation of the cellular "composition" of each epithelium is discussed and the frequency of the various cellular types after the count of one million of cells is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ovalbumin-like serine protease inhibitors are mainly localized intracellularly and their in vivo functions are largely unknown. To elucidate their physiological role(s), we studied the expression of one of these inhibitors, protease inhibitor 8 (PI-8), in normal human tissues by immunohistochemistry using a PI-8-specific monoclonal antibody. PI-8 was strongly expressed in the nuclei of squamous epithelium of mouth, pharynx, esophagus, and epidermis, and by the epithelial layer of skin appendages, particularly by more differentiated epithelial cells. PI-8 was also expressed by monocytes and by neuroendocrine cells in the pituitary gland, pancreas, and digestive tract. Monocytes showed nuclear and cytoplasmic localization of PI-8, whereas neuroendocrine cells showed only cytoplasmic staining. In vitro nuclear localization of PI-8 was confirmed by confocal analysis using serpin-transfected HeLa cells. Furthermore, mutation of the P(1) residue did not affect the subcellular distribution pattern of PI-8, indicating that its nuclear localization is independent of the interaction with its target protease. We conclude that PI-8 has a unique distribution pattern in human tissues compared to the distribution patterns of other intracellular serpins. Additional studies must be performed to elucidate its physiological role.