929 resultados para FACTOR-B
Resumo:
Despite the availability of hepatitis B vaccine for over two decades, drug users and other high-risk adult populations have experienced low vaccine coverage. Poor compliance has limited efforts to reduce transmission of hepatitis B infection in this population. Evidence suggests that immunological response in drug users is impaired compared to the general population, both in terms of lower seroprotection rates and antibodies levels.^ The current study investigated the effectiveness of the multi-dose hepatitis B vaccine and compared the effect of the standard and accelerated vaccine schedules in a not-in-treatment, drug-using adult population in the city of Houston, USA.^ A population of drug-users from two communities in Houston, susceptible to hepatitis B, was sampled by outreach workers and referral methodology. Subjects were randomized either to the standard hepatitis vaccine schedule (0, 1-, 6-month) or to an accelerated schedule (0, 1-, 2-month). Antibody levels were detected through laboratory analyses at various time-points. The participants were followed for two years and seroconversion rates were calculated to determine immune response.^ A four percent difference in the overall compliance rate was observed between the standard (73%) and accelerated schedules (77%). Logistic regression analyses showed that drug users living on the streets were twice as likely to not complete all three vaccine doses (p=0.028), and current speedball use was also associated with non-completion (p=0.002). Completion of all three vaccinations in the multivariate analysis was also correlated with older age. Drug users on the accelerated schedule were 26% more likely to achieve completion, although this factor was marginally significant (p=0.085).^ Cumulative adequate protective response was gained by 65% of the HBV susceptible subgroup by 12-months and was identical for both the standard and accelerated schedules. Excess protective response (>=100 mIU/mL) occurred with greater frequency at the later period for the standard schedule (36% at 12-months compared to 14% at six months), while the greater proportion of excess protective response for the accelerated schedule occurred earlier (34% at 6 months compared to 18% at 12-months). Seroconversion at the adequate protective response level of 10 mIU/mL was reached by the accelerated schedule group at a quicker rate (62% vs. 49%), and with a higher mean titer (104.8 vs. 64.3 mIU/mL), when measured at six months. Multivariate analyses indicated a 63% increased risk of non-response for older age and confirmed the existence of an accelerating decline in immune response to vaccination manifesting after 40 years (p=0.001). Injecting more than daily was also highly associated with the risk of non-response (p=0.016).^ The substantial increase in the seroprotection rate at six months may be worth the trade-off against the faster antibody titer decrease and is recommended for enhancing compliance and seroconversion. Utilization of the accelerated schedule with the primary objective of increasing compliance and seroconversion rates during the six months after the first dose may confer early protective immunity and reduce the HBV vulnerability of drug users who continue, or have recently initiated, increased high risk drug use and sexual behaviors.^
Resumo:
The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2, and closely-related species, Bacillus cereus and Bacillus thuringiensis, typically produce β-lactamases. This work demonstrates that B. anthracis bla expression is affected by two genes, sigP and rsp, predicted to encode an extracytoplasmic function sigma factor and an antisigma factor, respectively. Deletion of the sigP/rsp locus abolished bla expression in a penicillin-resistant clinical isolate and had no effect on bla expression in a prototypical penicillin-susceptible strain. Complementation with sigP/rsp from the penicillin-resistant strain, but not the penicillin-susceptible strain, conferred β-lactamase activity upon both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsp in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsp homologues are required for inducible penicillin resistance in those species. Expression of the B. cereus or B. thuringiensis sigP and rsp genes in a B. anthracis sigP/rsp-null mutant confers resistance to β-lactam antibiotics, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP/rsp gene products are insufficient for bla induction. ^ Because alternative sigma factors recognize unique promoter sequence, direct targets can be elucidated by comparing transcriptional profiling results with an in silico search using the sigma factor binding sequence. Potential σP -10 and -35 promoter elements were identified upstream from bla1 bla2 and sigP. Results obtained from searching the B. anthracis genome with the conserved sequences were evaluated against transcriptional profiling results comparing B. anthracis 32 and an isogenic sigP/rsp -null strain. Results from these analyses indicate that while the absence of the sigP gene significantly affects the transcript levels of 16 genes, only bla1, bla2 and sigP are directly regulated by σP. The genomes of B. cereus and B. thuringiensis strains were also analyzed for the potential σP binding elements. The sequence was located upstream from the sigP and bla genes, and previously unidentified genes predicted to encode a penicillin-binding protein (PBP) and a D-alanyl-D-alanine carboxypeptidase, indicating that the σ P regulon in these species responds to cell-wall stress caused by β-lactam antibiotics. ^ β-lactam antibiotics prevent attachment of new peptidoglycan to the cell wall by blocking the active site of PBPs. A B. cereus and B. thuringiensis pbp-encoding gene located near bla1 contains a potential σP recognition sequence upstream from the annotated translational start. Deletion of this gene abolished β-lactam resistance in both strains. Mutations in the active site of the PBP were detrimental to β-lactam resistance in B. cereus, but not B. thuringiensis, indicating that the transpeptidase activity is only important in B. cereus. I also found that transcript levels of the PBP-encoding gene are not significantly affected by the presence of β-lactam antibiotic. Based on these data I hypothesize that the gene product acts a sensor of β-lactam antibiotic. ^
Resumo:
Plasma low-density lipoprotein (LDL) levels are positively correlated with the incidence of coronary artery disease. In the circulation, the plasma LDL clearance is mainly achieved by the uptake via LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a newly discovered gene, playing an important role in LDL metabolism. Gain-of-function mutations of PCSK9 lead to hypercholesterolemia and loss-of-function mutations of PCSK9 are associated with decrease of LDL cholesterol. The effects of PCSK9 on cholesterol levels are the consequence of a strong interaction between the catalytic domain of PCSK9 and epidermal growth factor-like repeat A (EGF-A) domain of LDLR on the cell surface of hepatocytes. This PCSK9/LDLR complex enters the cell via endocytosis, where both PCSK9 and LDLR are removed via the lysosome pathway, resulting in decreased levels of LDLR and accumulation of LDL in the plasma. However, whether this is the exclusive function of PCSK9 on LDL metabolism was challenged by us; we observed PCSK9 interacted with apolipoprotein B (apoB) and increased apoB production, irrespective of the LDLR. ApoB is the primary structure protein of LDL particle and it also serves as the ligand for the LDL receptor. There is ample evidence showing that the levels of apoB are a better indicator for heart disease than either total cholesterol or LDL cholesterol levels. We used a second-generation adenoviral vector to overexpress PCSK9 (Ad-PCSK9) in wild-type C57BL/6 and LDLR deficient mice (Ldlr-/- and Ldlr-/-Apobec1-/-). Our study revealed that overexpression of PCSK9 promoted the production and secretion of apoB in the form of very-low density lipoprotein (VLDL), which is the precursor of LDL, in the 3 mouse models studied (C57BL/6J, Ldlr-/-, and Ldlr-/-Apobec1-/-). The increased apoB production in mice was regulated at post-transcriptional levels, since there was no difference in apoB mRNA levels between mice treated with Ad-PCSK9 and control vector Ad-Null. By using pulse-chase experiment on primary hepatocytes, we showed that overexpression of PCSK9 increased the secretion of apoB, independent of LDLR. In the circulation, we showed that PCSK9 was associated with LDL particles. By using 3 different protein–protein interaction assays of co-immunoprecipitation, mammalian two-hybrid system, and in situ proximity ligation assay, we demonstrated a direct protein–protein interaction between PCSK9 and apoB. The impact of this interaction inhibited the physiological removal process of apoB via autophagosome/lysosome pathway in an LDLR-independent fashion, resulting in increased production and secretion of apoB-containing lipoproteins. The significance of this process was shown in the Pcsk9 knockout mice in the background of Ldlr-/-Apobec1-/- mice (triple knockout mice); in the absence of Pcsk9 (triple knockout mice) the levels of cholesterol, triacylglycerol, and apoB decreased significantly in comparison to that of Ldlr-/-Apobec1-/- mice. Taken together, our study demonstrated a direct intracellular interaction of PCSK9 with apoB, resulting in the inhibition of apoB degradation via the autophagosome/lysosome pathway independent of LDLR. This discovery provides a new concept of the importance of PCSK9 and suggests new approaches for the therapeutic intervention of hyperlipidemia.
Resumo:
Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.
Resumo:
The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^
Resumo:
Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^
Resumo:
The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^
Resumo:
Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^
Resumo:
Fil: Fontana de García, María B..
Resumo:
Fil: Fontana de García, María B..
Resumo:
Fil: Fontana de García, María B..
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.
Resumo:
We provide high-resolution sea surface temperature (SST) and paleoproductivity data focusing on Termination 1. We describe a new method for estimating SSTs based on multivariate statistical analyses performed on modern coccolithophore census data, and we present the first downcore reconstructions derived from coccolithophore assemblages at Ocean Drilling Project (ODP) Site 1233 located offshore Chile. We compare our coccolithophore SST record to alkenone-based SSTs as well as SST reconstructions based on dinoflagellates and radiolaria. All reconstructions generally show a remarkable concordance. As in the alkenone SST record, the Last Glacial Maximum (LGM, 19-23 kyr B.P.) is not clearly defined in our SST reconstruction. After the onset of deglaciation, three major warming steps are recorded: from 18.6 to 18 kyr B.P. (~2.6°C), from 15.7 to 15.3 kyr B.P. (~2.5°C), and from 13 to 11.4 kyr B.P. (~3.4°C). Consistent with the other records from Site 1233 and Antarctic ice core records, we observed a clear Holocene Climatic Optimum (HCO) from ~8-12 kyr B.P. Combining the SST reconstruction with coccolith absolute abundances and accumulation rates, we show that colder temperatures during the LGM are linked to higher coccolithophore productivity offshore Chile and warmer SSTs during the HCO to lower coccolithophore productivity, with indications of weak coastal upwelling. We interpret our data in terms of latitudinal displacements of the Southern Westerlies and the northern margin of the Antarctic Circumpolar Current system over the deglaciation and the Holocene.