985 resultados para Extended-Range
Resumo:
The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.
Resumo:
In barley, variation in the requirement for vernalization (an extended period of low temperature before flowering can occur) is determined by the VRN-H1, -H2 and -H3 loci. In European cultivated germplasm, most variation in vernalization requirement is accounted for by alleles at VRN-H1 and VRN-H2 only, but the range of allelic variation is largely unexplored. Here we characterise VRN-H1 and VRN-H2 haplotypes in 429 varieties representing a large portion of the acreage sown to barley in Western Europe over the last 60 years. Analysis of genotype, intron I sequencing data and growth habit tests identified three novel VRN-H1 alleles and determined the most frequent VRN-H1 intron I rearrangements. Combined analysis of VRN-H1 and VRN-H2 alleles resulted in the classification of seventeen VRN-H1/VRN-H2 multi-locus haplotypes, three of which account for 79% of varieties. The molecular markers employed here represent powerful diagnostic tools for prediction of growth habit and assessment of varietal purity. These markers will also allow development of germplasm to test the behaviour of individual alleles with the aim of understanding the relationship between allelic variation and adaptation to specific agri-environments.
Resumo:
This paper describes the energetics and zonal-mean state of the upward extension of the Canadian Middle Atmosphere Model, which extends from the ground to ~210 km. The model includes realistic parameterizations of the major physical processes from the ground up to the lower thermosphere and exhibits a broad spectrum of geophysical variability. The rationale for the extended model is to examine the nature of the physical and dynamical processes in the mesosphere/lower thermosphere (MLT) region without the artificial effects of an imposed sponge layer which can modify the circulation in an unrealistic manner. The zonal-mean distributions of temperature and zonal wind are found to be in reasonable agreement with observations in most parts of the model domain below ~150 km. Analysis of the global-average energy and momentum budgets reveals a balance between solar extreme ultraviolet heating and molecular diffusion and a thermally direct viscous meridional circulation above 130 km, with the viscosity coming from molecular diffusion and ion drag. Below 70 km, radiative equilibrium prevails in the global mean. In the MLT region between ~70 and 120 km, many processes contribute to the global energy budget. At solstice, there is a thermally indirect meridional circulation driven mainly by parameterized nonorographic gravity-wave drag. This circulation provides a net global cooling of up to 25 K d^-1.
Resumo:
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.
Resumo:
Pseudomomentum and pseudoenergy are both measures of wave activity for disturbances in a fluid, relative to a notional background state. Together they give information on the propagation, growth, and decay of disturbances. Wave activity conservation laws are most readily derived for the primitive equations on the sphere by using isentropic coordinates. However, the intersection of isentropic surfaces with the ground (and associated potential temperature anomalies) is a crucial aspect of baroclinic wave evolution. A new expression is derived for pseudoenergy that is valid for large-amplitude disturbances spanning isentropic layers that may intersect the ground. The pseudoenergy of small-amplitude disturbances is also obtained by linearizing about a zonally symmetric background state. The new expression generalizes previous pseudoenergy results for quasigeostrophic disturbances on the β plane and complements existing large-amplitude results for pseudomomentum. The pseudomomentum and pseudoenergy diagnostics are applied to an extended winter from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis data. The time series identify distinct phenomena such as a baroclinic wave life cycle where the wave activity in boundary potential temperature saturates nonlinearly almost two days before the peak in wave activity near the tropopause. The coherent zonal propagation speed of disturbances at tropopause level, including distinct eastward, westward, and stationary phases, is shown to be dictated by the ratio of total hemispheric pseudoenergy to pseudomomentum. Variations in the lower-boundary contribution to pseudoenergy dominate changes in propagation speed; phases of westward progression are associated with stronger boundary potential temperature perturbations.
Resumo:
During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.
Resumo:
The synoptic evolution and some meteorological impacts of the European winter storm Kyrill that swept across Western, Central, and Eastern Europe between 17 and 19 January 2007 are investigated. The intensity and large storm damage associated with Kyrill is explained based on synoptic and mesoscale environmental storm features, as well as on comparisons to previous storms. Kyrill appeared on weather maps over the US state of Arkansas about four days before it hit Europe. It underwent an explosive intensification over the Western North Atlantic Ocean while crossing a very intense zonal polar jet stream. A superposition of several favourable meteorological conditions west of the British Isles caused a further deepening of the storm when it started to affect Western Europe. Evidence is provided that a favourable alignment of three polar jet streaks and a dry air intrusion over the occlusion and cold fronts were causal factors in maintaining Kyrill's low pressure very far into Eastern Europe. Kyrill, like many other strong European winter storms, was embedded in a pre-existing, anomalously wide, north-south mean sea-level pressure (MSLP) gradient field. In addition to the range of gusts that might be expected from the synoptic-scale pressure field, mesoscale features associated with convective overturning at the cold front are suggested as the likely causes for the extremely damaging peak gusts observed at many lowland stations during the passage of Kyrill's cold front. Compared to other storms, Kyrill was by far not the most intense system in terms of core pressure and circulation anomaly. However, the system moved into a pre-existing strong MSLP gradient located over Central Europe which extended into Eastern Europe. This fact is considered determinant for the anomalously large area affected by Kyrill. Additionally, considerations of windiness in climate change simulations using two state-of-the-art regional climate models driven by ECHAM5 indicate that not only Central, but also Eastern Central Europe may be affected by higher surface wind speeds at the end of the 21st century. These changes are partially associated with the increased pressure gradient over Europe which is identified in the ECHAM5 simulations. Thus, with respect to the area affected, as well as to the synoptic and mesoscale storm features, it is proposed that Kyrill may serve as an interesting study case to assess future storm impacts.
Resumo:
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures.
Resumo:
In this project we explore how to enhance the experience and understanding of cultural heritage in museums and heritage sites by creating interactive multisensory objects collaboratively with artists, technologists and people with learning disabilities. We focus here on workshops conducted during the first year of a three year project in which people with learning disabilities each constructed a 'sensory box' to represent their experiences of Speke Hall, a heritage site in the UK. The box is developed further in later workshops which explore aspects of physicality and how to appeal to the entire range of senses, making use of Arduino technology and basic sensors to enable an interactive user experience.
Resumo:
Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.
Resumo:
By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers’ extent.
Resumo:
The self-assembly of three cosmetically active peptide amphiphiles C16-GHK, C16-KT, and C16-KTTKS (C16 denotes a hexadecyl, palmitoyl chain) used in commercial skin care products is examined. A range of spectroscopic, microscopic, and X-ray scattering methods is used to probe the secondary structure, aggregate morphology, and the nanostructure. Peptide amphiphile (PA) C16-KTTKS forms flat tapes and extended fibrillar structures with high β-sheet content. In contrast, C16-KT and C16-GHK exhibit crystal-like aggregates with, in the case of the latter PA, lower β-sheet content. All three PA samples show spacings from bilayer structures in small-angle X-ray scattering profiles, and all three have similar critical aggregation concentrations, this being governed by the lipid chain length. However, only C16-KTTKS is stained by Congo red, a diagnostic dye used to detect amyloid formation, and this PA also shows a highly aligned cross-β X-ray diffraction pattern consistent with the high β-sheet content in the self-assembled aggregates. These findings may provide important insights relevant to the role of self-assembled aggregates on the reported collagen-stimulating properties of these PAs.
Resumo:
The use of pulse compression techniques to improve the sensitivity of meteorological radars has become increasingly common in recent years. An unavoidable side-effect of such techniques is the formation of ‘range sidelobes’ which lead to spreading of information across several range gates. These artefacts are particularly troublesome in regions where there is a sharp gradient in the power backscattered to the antenna as a function of range. In this article we present a simple method for identifying and correcting range sidelobe artefacts. We make use of the fact that meteorological targets produce an echo which fluctuates at random, and that this echo, like a fingerprint, is unique to each range gate. By cross-correlating the echo time series from pairs of gates therefore we can identify whether information from one gate has spread into another, and hence flag regions of contamination. In addition we show that the correlation coefficients contain quantitative information about the fraction of power leaked from one range gate to another, and we propose a simple algorithm to correct the corrupted reflectivity profile.
Resumo:
Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.
Resumo:
Kinship terms in papyrus letters do not always refer to actual relatives and so pose many problems for modern readers. But by examining all the kinship terms in six centuries of letters it is possible to discover some rules governing the use of kinship terms: in some situations they appear to be always literal, and in others they appear to be almost always extended, though a third group of contexts remains ambiguous. The rules are complex and depend on the particular kinship term involved, the date of writing, the use of names, the position of the kinship term in the letter, and the person to whom it connects the referent.