928 resultados para Evolutionary biology
Resumo:
The reproductive biology and population dynamics of the cirolanid isopod Excirolana armata (Dana, 1853) were analysed through monthly samples from December 2003 to November 2005 on Una beach, Sao Paulo state (24 degrees S), in Southeastern Brazil. Sampling was performed along three transects established from the base of foredunes to the waterline. On Una beach, E. armata showed continuous reproduction with higher abundances of ovigerous females in winter and spring (July-November) with a higher peak of juveniles in spring (November 2004). The fecundity ranged from 2 to 18 eggs/embryos per female, depending on the female length. The incubation period was estimated as 2 months. The life span of males and females was nearly 1 year. The short life span and the high energetic expenditure inherent to reproduction with maternal care, probably kept females from producing more than one brood in their lifetime. When comparing the population of E. armata on Una beach (24 degrees S) with populations in Southern Brazil (32 degrees S), Uruguay (34 degrees S) and Argentina (36 degrees S), it was verified that several biological population traits (length of the smallest juvenile, length of the largest individual, length of the smallest and largest ovigerous females, range of fecundity and life span) tended to increase at higher latitudes, whereas other traits (instantaneous rate of mortality and the curvature parameter of von Bertalanffy growth function) tended to decrease. However, comparing E. armata on Una beach (24 degrees S) with a population situated at a close latitude (25 degrees S), unexpected differences in relation to population structure and to growth demonstrated and reinforced the importance of density-dependent factors over life history traits of E. armata on dissipative beaches.
Resumo:
A phylogenetic analysis of a fragment of the mitochondrial gene 16S was used to test the monophyletic status of Potimirim. Existing doubts on the taxonomic status of brasiliana (once P glabra) and P potimirim (once P mexicana) were clarified. Potimirim mexicana and P potimirim are distinct species according to molecular data and appendix masculina morphology. A new species (Potimirim sp. 1) from Puerto Rico was revealed with molecular data, and it is evolutionarily related to P potimirim and P mexicana according to our analysis. We found out three distinct species under the name P glabra. Then, we recommend the application of the name P glabra for the populations of the Pacific slope of Central America and revalidation of P brasiliana for the Brazilian ones. The need for a new name to those "P glabra" of the Caribbean is highlighted, and it was provisionally referred as Potimirim sp. 2. The ontogenetic (juveniles to adults) development of the appendix masculina of P brasiliana was observed and compared to the other species of Potimirim (adults). In the light of our phylogenetic hypothesis, we postulate a pattern of character addition for the evolution of the appendix masculina of Potimirim. This hypothesis is plausible for two key reasons. First. Potimirim is a monophyletic group according to our hypothesis. Second, the shape of appendix masculina found in adults of P. americana is similar and comparable to those found in the earliest juvenile stages of P brasiliana, a derived species according to our phylogeny (P americana, ((P mexicana, Potimirim sp. 1. P potimirim), (P glabra, (brasiliana, Potimirim sp. 2)))). As so, the basal P americana retain the ancestral morphological state of the appendix masculina when compared to the other species of Potimirim. In our interpretation the ontogeny of the appendix masculina recapitulated the proposed phylogeny, giving further support to it.
Resumo:
Abstract Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks.
Resumo:
Although the theory of evolution is more than 150 years old, a substantial proportion of the world population does not mention it when explaining the origin of human beings. The usual alternative conception is offered by creationism, one of the main obstacles to full acceptance of evolution in many countries. National polls have demonstrated that schooling and religiosity are negatively correlated, with scientists being one of the least religious professionals. Herein we analyzed both (1) the profile of 1st semester undergraduate students and (2), thesis and dissertations, concerning religious and evolutionary thoughts from Biology and Veterinary Schools at the largest university of South America. We have shown that students of Biology are biased towards evolution before they enter university and also that the presence of an evolutionary-thinking academic atmosphere influences the deism/religiosity beliefs of postgraduate students.
Resumo:
Die Marantaceae (550 Arten) sind eine weltweit verbreitete Familie von Stauden und Lianen aus dem Unterwuchs tropischer Tieflandregenwälder. Der morphologisch-ökologische Vergleich des basal abzweigenden Sarcophrynium-Astes mit dem in abgeleiteter Position stehenden Marantochloa-Ast, soll beispielhaft evolutionäre Muster in der Familie beleuchten. So wird in der Doktorarbeit zum ersten Mal ein Überblick über die Blütenbiologie und Phylogenie von rund 30 der 40 afrikanischen Marantaceae Arten präsentiert. Die Analysen basieren auf Daten von drei mehrmonatigen Feldaufenthalten in Gabun jeweils zwischen September und Januar. Vier Blütentypen werden beschrieben, die jeweils mit einer spezifischen Bestäubergilde verbunden sind (kleine, mittlere, große Bienen bzw. Vögel). Bestäubungsexperimente belegen, dass 18 Arten selbstkompatibel, aber nur zwei Arten autogam sind, also keine Bestäubungsvermittler benötigen. Der Fruchtansatz ist generell gering (10 -30 %). Die komplexe Synorganisation der Blüte ermöglicht in den Marantaceae einen explosiven Bestäubungsmechanismus. Um dessen ökologische Funktionalität zu verstehen, werden die Blüten von 66 Arten, alle wichtigen Äste der Marantaceae abdeckend, unter einem morphologisch-funktionalen Gesichtspunkt untersucht. Es gibt große Übereinstimmungen zwischen allen untersuchten Arten im Zusammenspiel (Synorganisation) der wichtigsten Bauelemente (Griffel, Kapuzenblatt, Schwielenblatt), die eine präzise Pollenübertragung ermöglichen. Basierend auf Daten von nrDNA (ITS, 5S) und cpDNA (trnL-F) wird für ein nahezu komplettes Artenspektrum die Phylogenie der zwei afrikanischen Äste erstellt. Hierauf werden morphologische und ökologische Merkmale sowie geographischer Verbreitungsmuster nach dem Parsimonieprinzip rekonstruiert, um so deren evolutionäre Bedeutung für die Marantaceae abschätzen zu können. Die Ergebnisse weisen auf die Beteiligung einer Vielzahl verschiedener Artbildungsfaktoren hin.
Resumo:
Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.
Resumo:
Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP) showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM). A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i) as much as 20% of islands are in non-genic regions ii) these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii) most loci are strongly differentiated between Africans and non-Africans, a result consistent with known human demographic history.
Resumo:
Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic ‘ark’. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island.
Resumo:
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Resumo:
The past decade has seen the rise of high resolution datasets. One of the main surprises of analysing such data has been the discovery of a large genetic, phenotypic and behavioural variation and heterogeneous metabolic rates among individuals within natural populations. A parallel discovery from theory and experiments has shown a strong temporal convergence between evolutionary and ecological dynamics, but a general framework to analyse from individual-level processes the convergence between ecological and evolutionary dynamics and its implications for patterns of biodiversity in food webs has been particularly lacking. Here, as a first approximation to take into account intraspecific variability and the convergence between the ecological and evolutionary dynamics in large food webs, we develop a model from population genomics and microevolutionary processes that uses sexual reproduction, genetic-distance-based speciation and trophic interactions. We confront the model with the prey consumption per individual predator, species-level connectance and prey–predator diversity in several environmental situations using a large food web with approximately 25,000 sampled prey and predator individuals. We show higher than expected diversity of abundant species in heterogeneous environmental conditions and strong deviations from the observed distribution of individual prey consumption (i.e. individual connectivity per predator) in all the environmental conditions. The observed large variance in individual prey consumption regardless of the environmental variability collapsed species-level connectance after small increases in sampling effort. These results suggest (1) intraspecific variance in prey–predator interactions has a strong effect on the macroscopic properties of food webs and (2) intraspecific variance is a potential driver regulating the speed of the convergence between ecological and evolutionary dynamics in species-rich food webs. These results also suggest that genetic–ecological drift driven by sexual reproduction, equal feeding rate among predator individuals, mutations and genetic-distance-based speciation can be used as a neutral food web dynamics test to detect the ecological and microevolutionary processes underlying the observed patterns of individual and species-based food webs at local and macroecological scales.
Resumo:
A series of human-rodent somatic cell hybrids were investigated by Southern blot analysis for the presence or absence of twenty-six molecular markers and three isozyme loci from human chromosome 19. Based on the co-retention of these markers in the various independent hybrid clones containing portions of human chromosome 19 and on pulsed field mapping, chromosome 19 is divided into twenty ordered regions. The most likely marker order for the chromosome is: (LDLR, C3)-(cen-MANNB)-D19S7-PEPD-D19S9-GPI-TGF$ \beta$-(CYP2A, NCA, CGM2, BCKAD)-PSG1a-(D19S8, XRCC1)-(D19S19, ATP1A3)-(D19S37, APOC2)-CKMM-ERCC2-ERCC1-(D19S62, D19S51)-D19S6-D19S50-D19S22-(CGB, FTL)-qter.^ The region of 19q between the proximal marker D19S7 and the distal gene coding for the beta subunit of chorionic gonadotropin (CGB) is about 37 Mb in size and covers about 37 cM genetic distance. The ration of genetic to physical distance on 19q is therefore very close to the genomic average OF 1 cM/Mb. Estimates of physical distances for intervals between chromosome 19 markers were calculated using a mapping function which estimates distances based on the number of breaks in hybrid clone panels. The consensus genetic distances between individual markers (established at HBM10) were compared to these estimates of physical distances. The close agreement between the two estimates suggested that spontaneously broken hybrids are as appropriate for this type of study as radiation hybrids.^ All three DNA repair genes located on chromosome 19 were found to have homologues on Chinese hamster chromosome 9, which is hemizygous in CHO cells, providing an explanation for the apparent ease with which mutations at these loci were identified in CHO cells. Homologues of CKMM and TGF$\beta$ (from human chromosome 19q) and a mini-satellite DNA specific to the distal region of human chromosome 19q were also mapped to Chinese hamster 9. Markers from 19p did not map to this hamster chromosome. Thus the q-arm of chromosome 19, at least between the genes PEPD and ERCC1, appears to be a linkage group which is conserved intact between humans and Chinese hamsters. ^