923 resultados para Espèce invasive
Resumo:
A study into the role of secreted CLIC3 in tumour cell invasion. The initiation and progression of cancers is thought to be linked to their relationship with a population of activated fibroblasts, which are associated with tumours. I have used an organotypic approach, in which plugs of collagen I are preconditioned with fibroblastic cells, to characterise the mechanisms through which carcinoma-associated fibroblasts (CAFs) influence the invasive behaviour of tumour cells. I have found that immortalised cancer-associated fibroblasts (iCAFs) support increased invasiveness of cancer cells, and that this is associated with the ability of CAFs to increase the fibrillar collagen content of the extracellular matrix (ECM). To gain mechanistic insight into this phenomenon, an in-depth SILAC-based mass proteomic analysis was conducted, which allowed quantitative comparison of the proteomes of iCAFs and immortalised normal fibroblast (iNFs) controls. Chloride Intracellular Channel Protein 3 (CLIC3) was one of the most significantly upregulated components of the iCAF proteome. Knockdown of CLIC3 in iCAFs reduced the ability of these cells to remodel the ECM and to support tumour cell invasion through organotypic plugs. A series of experiments, including proteomic analysis of cell culture medium that had been preconditioned by iCAFs, indicated that CLIC3 itself was a component of the iCAF secretome that was responsible for the ability of iCAFs to drive tumour cell invasiveness. Moreover, addition of soluble recombinant CLIC3 (rCLIC3) was sufficient to drive the extension of invasive pseudopods in cancer cell lines, and to promote disruption of the basement membrane in a 3D in vitro model of the ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition. My investigation into the mechanism through which extracellular CLIC3 drives tumour cell invasiveness led me to focus on the relationship between CLIC3 and the ECM modifying enzyme, transglutaminase-2 (TG2). Through this, I have found that TG2 physically associates with CLIC3 and that TG2 is necessary for CLIC3 to drive tumour cell invasiveness. These data identifying CLIC3 as a key pro-invasive factor, which is secreted by CAFs, provides an unprecedented mechanism through which the stroma may drive cancer progression.
Resumo:
Exhaled breath (EB) and exhaled breath condensate (EBC) contain numerous volatile gases and a wide-array of non-volatile compounds, several of which have been investigated as markers of lower airway inflammation in human and veterinary medicine and have been used to diagnose and monitor diseases associated with pulmonary inflammation. The identification of reliable biomarkers within EB and EBC is an active research focus with the common goal of establishing non-invasive and repeatable assessment of respiratory health and disease in mammals. The application of EB and EBC analysis holds considerable appeal in the investigation of respiratory disease in Thoroughbred racehorses, as inflammatory airway disease (IAD) is a common cause for poor performance in this population of animals. This study documented that EB and EBC samples can be safely collected from Thoroughbred racehorses in their own environment, without adverse effect or interference with the horse’s training regimen. The use of off-line collection and analysis of exhaled gases via chemiluminescence is suitable for the measurement of exhaled carbon monoxide, but is not appropriate for analyzing exhaled nitric oxide in horses. Significant changes in the concentration of exhaled CO and the pH of EBC occurred in response to strenuous exercise and when exercising in different environmental temperatures. Exhaled CO was associated with tracheal mucus score (and the number of neutrophils in the mucus) and EBC pH was significantly different in horses with evidence of neutrophilic IAD compared to horses without IAD. Numerous physiological and environmental variables were identified as confounding factors in the assessment of both exhaled CO and EBC pH, with respiratory rate prior to EB collection, and during EBC collection, consistently identified as an explanatory variable influencing the concentration of exhaled biomarkers. Further studies in EB and EBC analysis in horses need to focus on objectively accounting for key respiratory dynamics during sample collection.
Resumo:
INTRODUCTION: Invasive aspergillosis (IA) is a fungal infection that particularly affects immunocompromised hosts. Recently, several studies have indicated a high incidence of IA in intensive care unit (ICU) patients. However, few data are available on the epidemiology and outcome of patients with IA in this setting.
Resumo:
Invasive candidiasis (IC) is an opportunistic systemic mycosis caused by Candida species (commonly Candida albicans) that continues to pose a significant public health problem worldwide. Despite great advances in antifungal therapy and changes in clinical practices, IC remains a major infectious cause of morbidity and mortality in severely immunocompromised or critically ill patients, and further accounts for substantial healthcare costs. Its impact on patient clinical outcome and economic burden could be ameliorated by timely initiation of appropriate antifungal therapy. However, early detection of IC is extremely difficult because of its unspecific clinical signs and symptoms, and the inadequate accuracy and time delay of the currently available diagnostic or risk stratification methods. In consequence, the diagnosis of IC is often attained in advanced stages of infection (leading to delayed therapeutic interventions and ensuing poor clinical outcomes) or, unfortunately, at autopsy. In addition to the difficulties encountered in diagnosing IC at an early stage, the initial therapeutic decision-making process is also hindered by the insufficient accuracy of the currently available tools for predicting clinical outcomes in individual IC patients at presentation. Therefore, it is not surprising that clinicians are generally unable to early detect IC, and identify those IC patients who are most likely to suffer fatal clinical outcomes and may benefit from more personalized therapeutic strategies at presentation. Better diagnostic and prognostic biomarkers for IC are thus needed to improve the clinical management of this life-threatening and costly opportunistic fungal infection...
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Objective: This study aims at determining if a collection of 16 motor tests on a physical simulator can objectively discriminate and evaluate practitioners' competency level, i.e. novice, resident, and expert. Methods: An experimental design with three study groups (novice, resident, and expert) was developed to test the evaluation power of each of the 16 simple tests. An ANOVA and a Student Newman-Keuls (SNK) test were used to analyze results of each test to determine which of them can discriminate participants' competency level. Results: Four of the 16 tests used discriminated all of the three competency levels and 15 discriminated at least two of the three groups (α= 0.05). Moreover, other two tests differentiate beginners\' level from intermediate, and other seven tests differentiate intermediate level from expert. Conclusion: The competency level of a practitioner of minimally invasive surgery can be evaluated by a specific collection of basic tests in a physical surgical simulator. Reduction of the number of tests needed to discriminate the competency level of surgeons can be the aim of future research.
Resumo:
Introduction: La ventilation non invasive (VNI) est un outil utilisé en soins intensifs pédiatriques (SIP) pour soutenir la détresse respiratoire aigüe. Un échec survient dans près de 25% des cas et une mauvaise synchronisation patient-ventilateur est un des facteurs impliqués. Le mode de ventilation NAVA (neurally adjusted ventilatory assist) est asservi à la demande ventilatoire du patient. L’objectif de cette étude est d’évaluer la faisabilité et la tolérance des enfants à la VNI NAVA et l’impact de son usage sur la synchronie et la demande respiratoire. Méthode: Étude prospective, physiologique, croisée incluant 13 patients nécessitant une VNI dans les SIP de l’hôpital Ste-Justine entre octobre 2011 et mai 2013. Les patients ont été ventilés successivement en VNI conventionnelle (30 minutes), en VNI NAVA (60 minutes) et en VNI conventionnelle (30 minutes). L’activité électrique du diaphragme (AEdi) et la pression des voies aériennes supérieures ont été enregistrées pour évaluer la synchronie. Résultats: La VNI NAVA est faisable et bien tolérée chez tous les enfants. Un adolescent a demandé l’arrêt précoce de l’étude en raison d’anxiété reliée au masque sans fuite. Les délais inspiratoires et expiratoires étaient significativement plus courts en VNI NAVA comparativement aux périodes de VNI conventionnelle (p< 0.05). Les efforts inefficaces étaient moindres en VNI NAVA (résultats présentés en médiane et interquartiles) : 0% (0 - 0) en VNI NAVA vs 12% (4 - 20) en VNI conventionnelle initiale et 6% (2 - 22) en VNI conventionnelle finale (p< 0.01). Globalement, le temps passé en asynchronie a été réduit à 8% (6 - 10) en VNI NAVA, versus 27% (19 - 56) et 32% (21 - 38) en périodes de VNI conventionnelle initiale et finale, respectivement (p= 0.05). Aucune différence en termes de demande respiratoire n’a été observée. Conclusion: La VNI NAVA est faisable et bien tolérée chez les enfants avec détresse respiratoire aigüe et permet une meilleure synchronisation patient-ventilateur. De plus larges études sont nécessaires pour évaluer l’impact clinique de ces résultats.