992 resultados para Enzyme Activation
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Resumo:
This study was designed to assess whether the acute blood pressure response of an individual hypertensive patient to a calcium antagonist or an angiotensin converting enzyme (ACE) inhibitor is a good predictor of the long-term efficacy of these drug classes in this particular patient. The concept that good responses to ACE inhibitors and calcium antagonists may be mutually exclusive was also tested. Sixteen patients were included in a randomized crossover trial of enalapril, 20 mg daily, and diltiazem, 120 mg daily, for 6 weeks each. Blood pressure was measured by ambulatory blood pressure recording. During the washout phase, the acute effect of nifedipine, 10 mg p.o., and enalaprilat, 5 mg i.v., was evaluated. Nifedipine and enalaprilat reduced blood pressure equally well. The long-term blood pressure reduction induced by enalapril and diltiazem was similar. The acute blood pressure response to a given drug was not a good predictor of the result obtained with long-term therapy. No age dependency of the antihypertensive effect of either drug class was apparent. There was no evidence that a good response to one drug excluded a similarly good response to the other.
Resumo:
Plasma protein fraction (PPF) contaminated by factor XII active fragment (XIIf) may cause hypotensive reactions when infused to patients. This study was planned to assess in conscious normotensive rats whether the blood pressure response to the factor XIIf is mediated by an activation of the plasma kallikrein-kinin system or by stimulation of prostaglandin synthesis. To test whether the factor XIIf-induced blood pressure fall is due partially to an enhanced generation of vasodilating prostaglandins, the blood pressure effect of XIIf (1 microgram i.v.) was investigated 15 min after treatment with indomethacin (5 mg i.v.), an inhibitor of cyclo-oxygenase. Factor XIIf reduced mean blood pressure similarly in indomethacin- and vehicle-treated rats (-23 +/- 4 mmHg, n = 5, and -23 +/- 5 mmHg, n = 4, respectively). Other rats received factor XIIf 15 min after depletion of circulating prekallikrein by the administration of dextran sulfate. Thirty minutes after a 0.25 mg i.v. dose of this agent, plasma prekallikrein activity averaged 0.12 +/- 0.015 mumol/min/ml (n = 6) as compared to 2.48 +/- 0.31 mumol/min/ml in control rats (n = 4, P less than .001). Factor XIIf decreased mean blood pressure by only 4 +/- 2 mm Hg in rats pretreated with dextran sulfate. Thus, it was possible to blunt the acute hypotensive effect of factor XIIf by depleting circulating prekallikrein, but not by inhibiting prostaglandin production. This strongly suggests that the blood pressure effects of factor XIIf is mediated by a stimulation of the plasma kallikrein-kinin system.
Resumo:
A new, orally active angiotensin converting enzyme (ACE) inhibitor, CGS 16617, has been evaluated in normotensive subjects during acute and prolonged administration. Single ascending doses of CGS 16617 20 to 100 mg were given to 9 normotensive volunteers at one week intervals and the changes in blood pressure, plasma ACE and renin activity were examined up to 72 h after drug intake. Also, CGS 16617 50 mg/day or placebo were given for 30 days to 8 and 6 normotensive subjects, respectively, maintained on an unrestricted salt diet. Blood pressure was measured daily in the office and ambulatory blood pressure profiles were also obtained before, during and after therapy, using the Remler M 2000 blood pressure recording system. CGS 16617 was an effective and long lasting ACE inhibitor. It did not induce a consistent change in blood pressure, but, the individual responses were very variable and several subjects experienced a clear decrease in the average of the blood pressures recorded during the daytime.
Resumo:
This double-blind placebo-controlled study was designed to investigate the acute and sustained hormonal, renal hemodynamic, and tubular effects of concomitant ACE and neutral endopeptidase (NEP) inhibition by omapatrilat, a vasopeptidase inhibitor, in men. Thirty-two normotensive subjects were randomized to receive a placebo, omapatrilat (40 or 80 mg), or the fosinopril/hydrochlorothiazide (FOS/HCTZ; 20 and 12.5 mg, respectively) fixed combination for 1 week. Blood pressure, renal hemodynamics, urinary electrolytes and atrial natriuretic peptide excretion, and several components of the renin-angiotensin system were measured for 6 hours on days 1 and 7 of drug administration. When compared with the placebo and the FOS/HCTZ combination, omapatrilat induced a significant decrease in plasma angiotensin II levels (P<0.001 versus placebo; P<0.05 versus FOS/HCTZ) and an increase in urinary atrial natriuretic peptide excretion (P<0.01). These hormonal effects were associated with a significant fall in blood pressure (P<0.01) and a marked renal vasodilatation, but with no significant changes in glomerular filtration rate. The FOS/HCTZ markedly increased urinary sodium excretion (P<0.001). The acute natriuretic response to FOS/HCTZ was significantly greater than that observed with omapatrilat (P<0.01). Over 1 week, however, the cumulative sodium excretion induced by both doses of omapatrilat (P<0.01 versus placebo) was at least as great as that induced by the dose of FOS/HCTZ (P=NS versus FOS/HCTZ). In conclusion, the results of the present study in normal subjects demonstrate that omapatrilat has favorable renal hemodynamic effects. Omapatrilat combines potent ACE inhibition with a sustained natriuresis, which explains its well-documented potent antihypertensive efficacy.
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.-Crisante, G., Battista, L., Iwaszkiewicz, J., Nesca, V., Mérillat, A.-M., Sergi, C., Zoete, V., Frateschi, S., Hummler, E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.
Resumo:
Inflammasomes are multi-protein complexes that serve as platforms for caspase-1 activation and subsequent proteolytic maturation of interkeukin 1ß (IL-1ß) within innate immune cells. The Nlrp3 inflammasome is the most fully characterised. It is activated by various endogenous danger signals such as environmental irritants, signals of tissue damage and pathogens. The broad spectrum of activators is reflected at the physiological level in its implication in normal and dysregulated immune responses, including various autoinflammatory diseases and the defence agaisnt numerous pathogens. Here, we summarise the present data on the activation of the Nlrp3 inflammasome by eukaryotic pathogens. Recent genetic studies using mice deficient in inflammasome components demonstrate the involvement of the inflammasome in the outcome of infection with the fungus Candida albicans, the helminth Schistosoma mansoni, as well as the malarial parasite Plasmodium berghei. Altered immune responses were respectively linked to the ability of live fungi, schistosomal egg antigen (SEA) or malarial hemozoin to activate the inflammasome and induce secretion of mature IL-1ß. The initial findings suggest that inflammasome activation may serve as a common and potentially druggable pathway in the defence agaisnt eukaryotic pathogens
Resumo:
The homeodomain protein PDX-1, referred as IPF-1/STF-1/IDX-1, is a transcriptional factor that plays a critical role in the control of several genes expressed in the pancreatic islet. PDX-1 gene expression has been previously shown to be reduced in cultured beta-cell lines chronically exposed to high glucose concentrations. As the glucose transporter type 2 (GLUT2) gene expression is selectively decreased in the beta-pancreatic cells of experimental models of diabetes, we postulated that the loss of GLUT2 gene expression in the pancreatic islets of diabetic animals may be due to the loss of PDX-1 transacting function on the GLUT2 gene. We, therefore, investigated the potential role of PDX-1 in the transcriptional control of GLUT2. We have identified a repeat of a TAAT motif (5'-TAATA-ATAACA-3') conserved in the sequence of the human and murine GLUT2 promoters. Recombinant PDX-1 binds to this GLUT2TAAT motif in electrophoretic mobility shift experiments. PDX-1 antiserum detects the formation of the complex of PDX-1 with the GLUT2TAAT motif in nuclear extracts from the pancreatic insulin-secreting cell line, beta TC3. The GLUT2TAAT motif was mutated in the murine GLUT2 promoter (-1308/+49 bp) linked to a luciferase reporter gene and transfected into beta TC3 cells. Compared with the transcriptional activity of the wild type promoter, that of the mutated promoter decreases by 41%. Multiple copies of the GLUT2TAAT motif were ligated 5' to a heterologous promoter and transfected into a PDX-1-expressing cell line (beta TC3) and into cell lines lacking the homeobox factor (InR1-G9 and JEG-3). The GLUT2TAAT motif mediates the activation of the heterologous promoter in the PDX-1-expressing cell line but not in InR1-G9 or JEG-3 cell lines. Furthermore, cotransfection in a PDX-1-deficient cell line with the expression vector encoding PDX-1 transactivates specifically the heterologous promoter containing the multimerized GLUT2TAAT motif. These data demonstrate that the murine GLUT2 promoter is controlled by the PDX-1 homeobox factor through the identified GLUT2TAAT motif.
Resumo:
Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.
Resumo:
The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat model with a mutated Lpin1 gene (Lpin1(1Hubr)), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin1(1Hubr) rats are characterized by hindlimb paralysis and mild lipodystrophy that are detectable from the second postnatal week. Sequencing of Lpin1 identified a point mutation in the 5'-end splice site of intron 18 resulting in mis-splicing, a reading frameshift, and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. Lpin1(1Hubr) rats developed hypomyelination and mild lipodystrophy rather than the pronounced demyelination and adipocyte defects characteristic of Lpin1(fld/fld) mice, which carry a null allele for Lpin1. Furthermore, biochemical, histological, and molecular analyses revealed that these lesions improve in older Lpin1(1Hubr) rats as compared with young Lpin1(1Hubr) rats and Lpin1(fld/fld) mice. We observed activation of compensatory biochemical pathways substituting for missing PAP1 activity that, in combination with a possible non-enzymatic Lipin 1 function residing outside of its PAP1 domain, may contribute to the less severe phenotypes observed in Lpin1(1Hubr) rats as compared with Lpin1(fld/fld) mice. Although we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into the pathogenicity of recently identified human LPIN1 mutations.