984 resultados para Enzyme Activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Possible interactions between different intracellular Ca(2+) release channels were studied in isolated rat gastric myocytes using agonist-evoked Ca(2+) signals. Spontaneous, local Ca(2+) transients were observed in fluo-4-loaded cells with linescan confocal imaging. These were blocked by ryanodine (100 microM) but not by the inositol 1,4,5-trisphosphate receptor (IP(3)R) blocker, 2-aminoethoxydiphenyl borate (100 microM), identifying them as Ca(2+) sparks. Caffeine (10 mM) and carbachol (10 microM) initiated Ca(2+) release at sites which co-localized with each other and with any Ca(2+) spark sites. In fura-2-loaded cells extracellular 2-aminoethoxydiphenyl borate and intracellular heparin (5 mg ml(-1)) both inhibited the global cytoplasmic [Ca(2+)] transient evoked by carbachol, confirming that it was IP(3)R-dependent. 2-Aminoethoxydiphenyl borate and heparin also increased the response to caffeine. This probably reflected an increased Ca(2+) store content since 2-aminoethoxydiphenyl borate more than doubled the amplitude of transients evoked by ionomycin. Ryanodine completely abolished carbachol and caffeine responses but only reduced ionomycin transients by 30 %, suggesting that blockade of carbachol transients by ryanodine was not simply due to store depletion. Double labelling of IP(3)Rs and RyRs demonstrated extensive overlap in their distribution. These results suggest that carbachol stimulates Ca(2+) release through co-operation between IP(3)Rs and RyRs, and implicate IP(3)Rs in the regulation of Ca(2+) store content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dioxygenase-catalysed trioxygenation of alkyl phenyl sulfides and alkyl benzenes yields enantiopure cis-dihydrodiol sulfoxides and triols respectively; naphthalene cis-dihydrodiol dehydrogenase-catalysed aromatisation of these diastereoisomers gives enantiopure catechols of either configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7–7.0. The enzyme had a Km of 0.53 mM for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes inter-specific differences in the distribution of sediment in the gut compartments and in the enzyme and bacterial profiles along the gut of abyssal holothurian species — Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus sampled from a eutrophic site in the NE Atlantic at different times of the year. Proportions of sediments, relative to total gut contents, in the pharynx, oesophagus, anterior and posterior intestine differed significantly in all the inter-species comparisons, but not between inter-seasonal comparisons. Significant differences were also found between the relative proportions of sediments in both the rectum and cloaca of Psychropotes longicauda and Oneirophanta mutabilis. Nineteen enzymes were identified in either gut-tissue or gut-content samples of the holothurians studied. Concentrations of the enzymes in gut tissues and their contents were highly correlated. Greater concentrations of the enzymes were found in the gut tissues suggesting that they are the main source of the enzymes. The suites of enzymes recorded were broadly similar in each of the species sampled collected regardless of the time of the year, and they were similar to those described previously for shallow-water holothurians. Significant inter-specific differences in the gut tissue concentrations of some of the glycosidases suggest dietary differences. For example, Psychropotes longicauda and Pseudostichopus villosus contain higher levels of chitobiase than Oneirophanta mutabilis. There were no seasonal changes in bacterial activity profiles along the guts of O. mutabilis and Pseudostichopus villosus. In both these species bacterial activity and abundance declined between the pharynx/oesophagus and anterior intestine, but then increased along the gut and became greatest in the rectum/cloaca. Although the data sets were more limited for Psychropotes longicauda, bacterial activity increased from the anterior to the posterior intestine but then declined slightly to the rectum/cloaca. These changes in bacterial activity and densities probably reflect changes in the microbial environment along the guts of abyssal holothurians. Such changes suggest that there is potential for microbial breakdown of a broader range of substrates than could be otherwise be achieved by the holothurian itself. However, the present study found no evidence for sedimentary (microbial) sources of hydrolytic enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferons (IFNs) are essential for host defense. Although the antiviral effects of the type 1 IFNs IFN- and IFN- (IFN-/) have been established, their immunoregulatory functions, especially their ability to regulate IFN- production, are poorly understood. Here we show that IFN-/ activate STAT4 directly (STAT, signal transducers and activators of transcription) and that this is required for IFN- production during viral infections of mice, in concert with T cell receptor-derived signals. In contrast, STAT1 appears to negatively regulate IFN-/ induction of IFN-. Thus, type 1 IFNs, in addition to interleukin-12, provide pathways for innate regulation of adaptive immunity, and their immunoregulatory functions are controlled by modulating the activity of individual STATs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppressors of cytokine signalling (SOCS, also known as CIS and SSI) are encoded by immediate early genes that act in a feedback loop to inhibit cytokine responses and activation of 'signal transducer and activator of transcription' (STAT). Here we show that SOCS-3 is strongly tyrosine-phosphorylated in response to many growth factors, including interleukin-2 (IL-2), erythropoietin (EPO), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). The principal phosphorylation sites on SOCS-3 are residues 204 and 221 at the carboxy terminus, and upon phosphorylation tyrosine 221 interacts with the Ras inhibitor p120 RasGAP. After IL-2 stimulation, phosphorylated SOCS-3 strongly inhibits STAT5 activation but, by binding to RasGAP, maintains activation of extracellular-signal-regulated kinase (ERK). A tyrosine mutant of SOCS-3 still blocks STAT phosphorylation, but also strongly inhibits IL-2-dependent activation of ERK and cell proliferation. Moreover, it also inhibits EPO- and PDGF-induced proliferation and ERK activation. Therefore, although SOCS proteins inhibit growth-factor responses, tyrosine phosphorylation of SOCS-3 can ensure cell survival and proliferation through the Ras pathway.