966 resultados para Entropy diagrams


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show numerically that direct delayed optoelectronic feedback can suppress hysteresis and bistability in a directly modulated semiconductor laser. The simulation of a laser with feedback is performed for a considerable range of feedback strengths and delays and the corresponding values for the areas of the hysteresis loops are calculated. It is shown that the hysteresis loop completely vanishes for certain combinations of these parameters. The regimes for the disappearance of bistability are classified globally. Different dynamical states of the laser are characterized using bifurcation diagrams and time series plots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of coupling on two high frequency modulated semiconductor lasers is numerically studied. The phase diagrams and bifurcatio.n diagrams are drawn. As the coupling constant is increased the system goes from chaotic to periodic behavior through a reverse period doubling sequence. The Lyapunov exponent is calculated to characterize chaotic and periodic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis lays importance in the preparation and characterization of a few selected representatives of the ferrite family in the nanoregime. The candidates being manganese zinc ferrite and cobalt ferrite prepared by coprecipitation and sol-gel combustion techniques respectively. The thesis not only stresses importance on the preparation techniques and optimization of the reaction conditions, but emphasizes in investigating the various properties namely structural, magnetic and electrical. Passivated nickel nanocomposites are synthesized using polystyrene beads and adopting a novel route of ion exchange reduction. The structural and magnetic properties of these magnetic nanocomposites are correlated. The magnetocaloric effect (MCE) exhibited by these materials are also investigated with a view to finding out the potential of these materials as magnetic refrigerants. Calculations using numerical methods are employed to evaluate the entropy change on selected samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a numerical study of synchronisation of two directly modulated semiconductor lasers, using bi-directional coupling, are presented. The effect of stepwise increase in the coupling strength (C) on the synchronisation of the chaotic outputs of two such lasers is studied, with the help of parameter space plots, synchronisation error plots, phase diagrams and time series outputs. Numerical results indicate that as C increases, the system achieves synchronisation as well as stability together with an increase in the output power. The stability of the synchronised states is checked by applying a perturbation to the system after it becomes synchronised and then noting the time it takes to regain synchronisation. For lower values of C the system does not regain synchronisation. But, with higher values synchronisation is regained within a very short time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using laser transmission, the characteristics of hydrodynamic turbulence is studied following one of the recently developed technique in nonlinear dynamics. The existence of deterministic chaos in turbulence is proved by evaluating two invariants viz. dimension of attractor and Kolmogorov entropy. The behaviour of these invariants indicates that above a certain strength of turbulence the system tends to more ordered states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems. Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization properties of the nonlinear system under consideration in its characteristic parameter space is attempted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical analysis of an electroencephalogram of a human Brain during an epileptic seizure shows that the K2 entropy decreases as compared to a clinically normal brain while the dimension of the attractor does not show significant deviation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.