910 resultados para Energy performance rating


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Sweden, 90% of the solar heating systems are solar domestic hot water and heating systems (SDHW&H), so called combisystems. These generally supply most of the domestic hot water needs during the summer and have enough capacity to supply some energy to the heating system during spring and autumn. This paper describes a standard Swedish combisystem and how the output from it varies with heating load, climate within Sweden, and how it can be increased with improved system design. A base case is defined using the standard combi- system, a modern Swedish single family house and the climate of Stockholm. Using the simulation program Trnsys, parametric studies have been performed on the base case and improved system designs. The solar fraction could be increased from 17.1% for the base case to 22.6% for the best system design, given the same system size, collector type and load. A short analysis of the costs of changed system design is given, showing that payback times for additional investment are from 5-8 years. Measurements on system components in the laboratory have been used to verify the simulation models used. More work is being carried out in order to find even better system designs, and further improvements in system performance are expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work is to develop a cost effective semistationary CPC concentrator for a string PV-module. A novel method of using annual irradiation distribution diagram projected in a north-south vertical plane is developed. This method allows us easily to determine the optimum acceptance angle of the concentrator and the required number of annual tilts. Concentration ranges of 2-5x are investigated with corresponding acceptance angles between 5 and 15°. The concentrator should be tilted 2-6 times per year. Experiments has been performed on a string module of 10 cells connected in a series and equipped with a compound parabolic concentrator with C = 3.3X. Measurement show that the output will increase with a factor of 2-2.5 for the concentrator module, compared to a reference module without concentrator. If very cheap aluminium reflectors are used the costs for the PV-module can be decreased nearly by a factor of two.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To design, develop and set up a web-based system for enabling graphical visualization of upper limb motor performance (ULMP) of Parkinson’s disease (PD) patients to clinicians. Background Sixty-five patients diagnosed with advanced PD have used a test battery, implemented in a touch-screen handheld computer, in their home environment settings over the course of a 3-year clinical study. The test items consisted of objective measures of ULMP through a set of upper limb motor tests (finger to tapping and spiral drawings). For the tapping tests, patients were asked to perform alternate tapping of two buttons as fast and accurate as possible, first using the right hand and then the left hand. The test duration was 20 seconds. For the spiral drawing test, patients traced a pre-drawn Archimedes spiral using the dominant hand, and the test was repeated 3 times per test occasion. In total, the study database consisted of symptom assessments during 10079 test occasions. Methods Visualization of ULMP The web-based system is used by two neurologists for assessing the performance of PD patients during motor tests collected over the course of the said study. The system employs animations, scatter plots and time series graphs to visualize the ULMP of patients to the neurologists. The performance during spiral tests is depicted by animating the three spiral drawings, allowing the neurologists to observe real-time accelerations or hesitations and sharp changes during the actual drawing process. The tapping performance is visualized by displaying different types of graphs. Information presented included distribution of taps over the two buttons, horizontal tap distance vs. time, vertical tap distance vs. time, and tapping reaction time over the test length. Assessments Different scales are utilized by the neurologists to assess the observed impairments. For the spiral drawing performance, the neurologists rated firstly the ‘impairment’ using a 0 (no impairment) – 10 (extremely severe) scale, secondly three kinematic properties: ‘drawing speed’, ‘irregularity’ and ‘hesitation’ using a 0 (normal) – 4 (extremely severe) scale, and thirdly the probable ‘cause’ for the said impairment using 3 choices including Tremor, Bradykinesia/Rigidity and Dyskinesia. For the tapping performance, a 0 (normal) – 4 (extremely severe) scale is used for first rating four tapping properties: ‘tapping speed’, ‘accuracy’, ‘fatigue’, ‘arrhythmia’, and then the ‘global tapping severity’ (GTS). To achieve a common basis for assessment, initially one neurologist (DN) performed preliminary ratings by browsing through the database to collect and rate at least 20 samples of each GTS level and at least 33 samples of each ‘cause’ category. These preliminary ratings were then observed by the two neurologists (DN and PG) to be used as templates for rating of tests afterwards. In another track, the system randomly selected one test occasion per patient and visualized its items, that is tapping and spiral drawings, to the two neurologists. Statistical methods Inter-rater agreements were assessed using weighted Kappa coefficient. The internal consistency of properties of tapping and spiral drawing tests were assessed using Cronbach’s α test. One-way ANOVA test followed by Tukey multiple comparisons test was used to test if mean scores of properties of tapping and spiral drawing tests were different among GTS and ‘cause’ categories, respectively. Results When rating tapping graphs, inter-rater agreements (Kappa) were as follows: GTS (0.61), ‘tapping speed’ (0.89), ‘accuracy’ (0.66), ‘fatigue’ (0.57) and ‘arrhythmia’ (0.33). The poor inter-rater agreement when assessing “arrhythmia” may be as a result of observation of different things in the graphs, among the two raters. When rating animated spirals, both raters had very good agreement when assessing severity of spiral drawings, that is, ‘impairment’ (0.85) and irregularity (0.72). However, there were poor agreements between the two raters when assessing ‘cause’ (0.38) and time-information properties like ‘drawing speed’ (0.25) and ‘hesitation’ (0.21). Tapping properties, that is ‘tapping speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’ had satisfactory internal consistency with a Cronbach’s α coefficient of 0.77. In general, the trends of mean scores of tapping properties worsened with increasing levels of GTS. The mean scores of the four properties were significantly different to each other, only at different levels. In contrast from tapping properties, kinematic properties of spirals, that is ‘drawing speed’, ‘irregularity’ and ‘hesitation’ had a questionable consistency among them with a coefficient of 0.66. Bradykinetic spirals were associated with more impaired speed (mean = 83.7 % worse, P < 0.001) and hesitation (mean = 77.8% worse, P < 0.001), compared to dyskinetic spirals. Both these ‘cause’ categories had similar mean scores of ‘impairment’ and ‘irregularity’. Conclusions In contrast from current approaches used in clinical setting for the assessment of PD symptoms, this system enables clinicians to animate easily and realistically the ULMP of patients who at the same time are at their homes. Dynamic access of visualized motor tests may also be useful when observing and evaluating therapy-related complications such as under- and over-medications. In future, we foresee to utilize these manual ratings for developing and validating computer methods for automating the process of assessing ULMP of PD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson’s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson’s Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions.   The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and indentify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered.   The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20 % without sacrificing ventilation efficiency or thermal comfort.   Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest nurseries are essential for producing good quality seedlings, thus being a key element in the reforestation process. With increasing climate change awareness, nursery managers are looking for new tools that can help reduce the effects of their operations on the environment. The ZEPHYR project, funded by the European Commission under the Seventh Framework Programme (FP7), has the objective of finding new alternatives for nurseries by developing innovative zero-impact technologies for forest plant production. Due to their direct relationship to the energy consumption of the nurseries, one of the main elements addressed are the grow lights used for the pre-cultivation. New LED luminaires with a light spectrum tailored to the seedlings’ needs are being studied and compared against the traditional fluorescent lamps. Seedlings of Picea abies and Pinus sylvestris were grown under five different light spectra (one fluorescent and 4 LED) during 5 weeks with a photoperiod of 16 hours at 100 μmol∙m-2∙s-1 and 60% humidity. In order to evaluate if these seedlings were able cope with real field stress conditions, a forest field trial was also designed. The terrain chosen was a typical planting site in mid-Sweden after clear-cutting. Two vegetation periods after the outplanting, the seedlings that were pre-cultivated under the LED lamps have performed at least as well as those that were grown under fluorescent lights. These results show that there is a good  potential for lightning substitution in forestry nurseries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations. © 2012 The Authors.