976 resultados para Emission cross-sections
Resumo:
ln this paper we describe a stratigraphic column of the Cretaceous of the Montgrí. This description is based on several partial stratigraphic cross sections as well as on the lithological character of the different levels and their faunal content, specially megafossils
Resumo:
Increase of the metropolitan area of cities provoking a progressive settlement of zones that previously had a different territorial use. These zones are usually located within city houndaries and for many years have been affected hy the waste of many kinds of residues. Qualitative analysis of the electrical behaviour of soil, based on maps and cross sections of apparent conductivity, allows us to locate anomalies generated by the wastes. Moreover, the electrornagnetic techniques (EM-31 and EM-34 Geonics devices) are cheaper than other survey methods. Two examples in the campus of the University of Girona, in the southern area of Girona city, illustrate the environmental problem and the applicability of the geophysical method
Resumo:
Nitrogen trifluoride (NF3) is an industrial gas used in the semiconductor industry as a plasma etchant and chamber cleaning gas. NF3 is an alternative to other potent greenhouse gases and its usage has increased markedly over the last decade. In recognition of its increased relevance and to aid planning of future usage we report an updated radiative efficiency and global warming potentials for NF3. Laboratory measurements give an integrated absorption cross section of 7.04 x 10(-17) cm(2) molecule(-1) cm(-1) over the spectral region 200 2000 cm(-1). The radiative efficiency is calculated to be 0.21 Wm(-2) ppbv(-1) and the 100 year GWP, relative to carbon dioxide, is 17200. These values are approximately 60% higher than previously published estimates, primarily reflecting the higher infrared absorption cross-sections reported here.
Resumo:
Constant-α force-free magnetic flux rope models have proven to be a valuable first step toward understanding the global context of in situ observations of magnetic clouds. However, cylindrical symmetry is necessarily assumed when using such models, and it is apparent from both observations and modeling that magnetic clouds have highly noncircular cross sections. A number of approaches have been adopted to relax the circular cross section approximation: frequently, the cross-sectional shape is allowed to take an arbitrarily chosen shape (usually elliptical), increasing the number of free parameters that are fit between data and model. While a better “fit” may be achieved in terms of reducing the mean square error between the model and observed magnetic field time series, it is not always clear that this translates to a more accurate reconstruction of the global structure of the magnetic cloud. We develop a new, noncircular cross section flux rope model that is constrained by observations of CMEs/ICMEs and knowledge of the physical processes acting on the magnetic cloud: The magnetic cloud is assumed to initially take the form of a force-free flux rope in the low corona but to be subsequently deformed by a combination of axis-centered self-expansion and heliocentric radial expansion. The resulting analytical solution is validated by fitting to artificial time series produced by numerical MHD simulations of magnetic clouds and shown to accurately reproduce the global structure.
Resumo:
Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.
Resumo:
Slantwise convective available potential energy (SCAPE) is a measure of the degree to which the atmosphere is unstable to conditional symmetric instability (CSI). It has, until now, been defined by parcel theory in which the atmosphere is assumed to be nonevolving and balanced, that is, two-dimensional. When applying this two-dimensional theory to three-dimensional evolving flows, these assumptions can be interpreted as an implicit assumption that a timescale separation exists between a relatively rapid timescale for slantwise ascent and a slower timescale for the development of the system. An approximate extension of parcel theory to three dimensions is derived and it is shown that calculations of SCAPE based on the assumption of relatively rapid slantwise ascent can be qualitatively in error. For a case study example of a developing extratropical cyclone, SCAPE calculated along trajectories determined without assuming the existence of the timescale separation show large SCAPE values for parcels ascending from the warm sector and along the warm front. These parcels ascend into the cloud head within which there is some evidence consistent with the release of CSI from observational and model cross sections. This region of high SCAPE was not found for calculations along the relatively rapidly ascending trajectories determined by assuming the existence of the timescale separation.
Resumo:
Electron attachment was studied in gaseous dinitrogen pentoxide, N2O5, for incident electron energies between a few meV and 10 eV. No stable parent anion N2O5- was observed but several anionic fragments (NO3-, NO2-, NO-, O-, and O-2(-)) were detected using quadrupole mass spectrometry. Many of these dissociative pathways were found to be coupled and provide detailed information on the dynamics of N2O5 fragmentation. Estimates of the cross sections for production of each of the anionic fragments were made and suggest that electron attachment to N2O5 is amongst the most efficient attachment reactions recorded for nonhalogenated polyatomic systems. (C) 2004 American Institute of Physics.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.
Resumo:
Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ∼1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ2 = 1.9–3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.
Resumo:
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.
Resumo:
Bleaching spectra of the ‘fast’ and ‘medium’ optically stimulated luminescence (OSL) components of quartz are reported. A dependence of photoionization cross-section, σ, on wavelength was observed for the fast and medium components and a significant difference in their responses to stimulation wavelength was found. The ratio of the fast and medium photoionization cross-sections, σfast/σmedium, varied from 30.6 when stimulated with View the MathML source light to 1.4 at View the MathML source. At View the MathML source the fast and medium photoionization cross-sections were found to be sufficiently different that infrared bleaching at raised temperatures allowed the selective removal of the fast component with negligible depletion of the medium. A method for optically separating the OSL components of quartz is suggested, based on the wavelength dependence of photoionization cross-sections.
Resumo:
Some climatological information from 14 atmospheric general circulation models is presented and compared in order to assess the ability of a broad group of models to simulate current climate. The quantities considered are cross sections of temperature, zonal wind, and meridional stream function together with latitudinal distributions of mean sea level pressure and precipitation rate. The nature of the deficiencies in the simulated climates that are common to all models and those which differ among models is investigated; the general improvement in the ability of models to simulate certain aspects of the climate is shown; consideration is given to the effect of increasing resolution on simulated climate; and approaches to understanding and reducing model deficiencies are discussed. The information presented here is a subset of a more voluminous compilation which is available in report form (Boer et al., 1991). This report contains essentially the same text, but results from all 14 models are presented together with additional results in the form of geographical distributions of surface variables and certain difference statistics.
Resumo:
Climatological information from fourteen atmospheric general circulation models is presented and compared in order to assess the ability of a broad group of models to simulate current climate. The quantities considered are cross sections of temperature, zonal wind and meridional stream function together with latitudinal distributions of mean sea-level pressure and precipitation rate. The nature of the deficiencies in the simulated climates that are common to all models and those which differ among models is investigated, general improvement in the ability of models to simulate certain aspects of the climate is shown, consideration is given to the effect of increasing resolution on simulated climate and approaches to the understanding and reduction of model deficiencies are discussed.
Resumo:
Radiative forcing values have been calculated for 11 halogenated compounds which are in current use or which have been suggested as possible replacements for the chlorofluorocarbons. Absorption cross-sections measured over a range of atmospheric temperature and pressure conditions as part of a multi-laboratory programme have been used together with a narrow band radiative transfer model. We provide a “best estimate” radiative forcing taking into account the likely vertical profile of the gas in each case. The Global Warming Potential over a variety of time horizons has also been calculated where the lifetime is available. We present the first such information for 1,2-dichloroethane. For chloroform our radiative forcing is 5 times higher than the value used in previous assessments, possibly because these ignored the effect of absorption outside the 800–1200 cm−1 “window”. For several of the other compounds considered here, our forcing is between 10 and 30% lower than previous assessments. The perfluorocarbons have been found to have large global warming potentials, many times that of CFC-11, due to both strong absorption and long lifetimes. The importance of absorption features at wavenumbers below 800 cm−1 and the effect of temperature variations in absorption cross-section on the radiative forcing are also investigated.