964 resultados para Einstein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that an optical parametric oscillator based on three concurrent chi((2)) nonlinearities can produce, above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-variable entanglement. We also show that there are two ways that the system can exhibit a three-mode form of the Einstein-Podolsky-Rosen paradox, and calculate the extracavity fluctuation spectra that may be measured to verify our predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and bare Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T-c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor Z(m) of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T-c. Our many-body calculations of Z(m) agree qualitatively well with recent measurments of the gas of Li-6 atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze photoionization and ion detection as a means of accurately counting ultracold atoms. We show that it is possible to count clouds containing many thousands of atoms with accuracies better than N-1/2 with current technology. This allows the direct probing of sub-Poissonian number statistics of atomic samples. The scheme can also be used for efficient single-atom detection with high spatiotemporal resolution. All aspects of a realistic detection scheme are considered, and we discuss experimental situations in which such a scheme could be implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference between the two resonances. We subsequently demonstrate how the phase and polarization of the rf radiation directly control the phase of the matter wave interference and provide a semiclassical interpretation of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine alcohol use in conjunction with ecstasy use and risk-taking behaviors among regular ecstasy users in every capital city in Australia. Data on drug use and risks were collected in 2004 from a national sample of 852 regular ecstasy users (persons who had used ecstasy at least monthly in the preceding 6 months). Users were grouped according to their typical alcohol use when using ecstasy: no use, consumption of between one and five standard drinks, and consumption of more than five drinks (binge alcohol use). The sample was young, well educated, and mainly working or studying. Approximately two thirds (65%) of the regular ecstasy users reported drinking alcohol when taking ecstasy. Of these, 69% reported usually consuming more than five standard drinks. Those who did not drink alcohol were more disadvantaged, with greater levels of unemployment, less education, higher rates of drug user treatment, and prison history. They were also more likely than those who drank alcohol when using ecstasy to be drug injectors and to be hepatitis C positive. Excluding alcohol, drug use patterns were similar between groups, although the no alcohol group used cannabis and methamphetamine more frequently. Binge drinkers were more likely to report having had three or more sexual partners in the past 6 months and were less likely to report having safe sex with casual partners while under the influence of drugs. Despite some evidence that the no alcohol group were more entrenched drug users, those who typically drank alcohol when taking ecstasy were as likely to report risks and problems associated with their drug use. It appears that regular ecstasy users who binge drink are placing themselves at increased sexual risk when under the influence of drugs. Safe sex messages should address the sexual risk associated with substance use and should be tailored to reducing alcohol consumption, particularly targeting heavy alcohol users. The study's limitations are noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R-2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selleri's arguments that a consideration of noninertial reference frames in the framework of special relativity identify absolute simultaneity as being Nature's choice of synchronization are considered. In the case of rectilinearly accelerating rockets, it is argued by considering two rockets which maintain a fixed proper separation rather than a fixed separation relative to the inertial frame in which they start from rest, that what seems the most natural choice for a simultaneity convention is problem-dependent and that Einstein's definition is the most natural (though still conventional) choice in this case. In addition, the supposed problems special relativity has with treating a rotating disk, namely how a pulse of light traveling around the circumference of the disk can have a local speed of light equal to c everywhere but a global speed not equal to c, and how coordinate transformations to the disk can give the Lorentz transformations in the limit of large disk radius but small angular velocity, are addressed. It is shown that the theory of Fermi frames solves both of these problems. It is also argued that the question of defining simultaneity relative to a uniformly rotating disk does riot need to be resolved in order to resolve Ehrenfest's paradox.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.