978 resultados para East-Weastwards increasing collision ages
Resumo:
Abstract—DC testing of parametric faults in non-linear analog circuits based on a new transformation, entitled, V-Transform acting on polynomial coefficient expansion of the circuit function is presented. V-Transform serves the dual purpose of monotonizing polynomial coefficients of circuit function expansion and increasing the sensitivity of these coefficients to circuit parameters. The sensitivity of V-Transform Coefficients (VTC) to circuit parameters is up to 3x-5x more than sensitivity of polynomial coefficients. As a case study, we consider a benchmark elliptic filter to validate our method. The technique is shown to uncover hitherto untestable parametric faults whose sizes are smaller than 10 % of the nominal values. I.
Resumo:
Technology scaling has caused Negative Bias Temperature Instability (NBTI) to emerge as a major circuit reliability concern. Simultaneously leakage power is becoming a greater fraction of the total power dissipated by logic circuits. As both NBTI and leakage power are highly dependent on vectors applied at the circuit’s inputs, they can be minimized by applying carefully chosen input vectors during periods when the circuit is in standby or idle mode. Unfortunately input vectors that minimize leakage power are not the ones that minimize NBTI degradation, so there is a need for a methodology to generate input vectors that minimize both of these variables.This paper proposes such a systematic methodology for the generation of input vectors which minimize leakage power under the constraint that NBTI degradation does not exceed a specified limit. These input vectors can be applied at the primary inputs of a circuit when it is in standby/idle mode and are such that the gates dissipate only a small amount of leakage power and also allow a large majority of the transistors on critical paths to be in the “recovery” phase of NBTI degradation. The advantage of this methodology is that allowing circuit designers to constrain NBTI degradation to below a specified limit enables tighter guardbanding, increasing performance. Our methodology guarantees that the generated input vector dissipates the least leakage power among all the input vectors that satisfy the degradation constraint. We formulate the problem as a zero-one integer linear program and show that this formulation produces input vectors whose leakage power is within 1% of a minimum leakage vector selected by a search algorithm and simultaneously reduces NBTI by about 5.75% of maximum circuit delay as compared to the worst case NBTI degradation. Our paper also proposes two new algorithms for the identification of circuit paths that are affected the most by NBTI degradation. The number of such paths identified by our algorithms are an order of magnitude fewer than previously proposed heuristics.
Resumo:
The problem of collision prediction in dynamic environments appears in several diverse fields, which include robotics, air vehicles, underwater vehicles, and computer animation. In this paper, collision prediction of objects that move in 3-D environments is considered. Most work on collision prediction assumes objects to be modeled as spheres. However, there are many instances of object shapes where an ellipsoidal or a hyperboloid-like bounding box would be more appropriate. In this paper, a collision cone approach is used to determine collision between objects whose shapes can be modeled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained in the form of analytical expressions in the relative velocity space. For objects of arbitrary shapes, exact representations of planar sections of the 3-D collision cone are obtained.
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
Garnet-kyanite-staurolite gneiss in the Pangong complex, Ladakh Himalaya, contains porphyroblastic euhedral garnets, blades of kyanite and resorbed staurolite surrounded by a fine-grained muscovite-biotite matrix associated with a leucogranite layer. Sillimanite is absent. The gneiss contains two generations of garnet in cores and rims that represent two stages of metamorphism. Garnet cores are extremely rich in Mn (X(Sps) = 0.35-038) and poor in Fe (X(Alm) = 0.40-0.45), whereas rims are relatively Mn-poor (X(Sps) =0.07-0.08), and rich in Fe (X(Alm), = 0.75-0.77). We suggest that garnet cores formed during prograde metamorphism in a subduction zone followed by abrupt exhumation, during early collision of the Ladakh arc and Karakoram block. The subsequent India-Asia continental collision subducted the metamorphic rocks to a mid-crustal level, where the garnet rims overgrew the Mn-rich cores at ca. 680 degrees C and ca. 8.5 kbar. PT calculations were estimated from phase diagrams calculated using a calculated bulk chemical composition in the Mn-NCKFMASHT system for the garnet-kyanite-staurolite-bearing assemblage. Muscovites from the metamorphic rocks and associated leucogranites have consistent K-Ar ages (ca. 10 Ma), closely related to activation of the Karakoram fault in the Pangong metamorphic complex. These ages indicate the contemporaneity of the exhumation of the metamorphic rocks and the cooling of the leucogranites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.
Resumo:
Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.
Resumo:
We report Si-isotopic compositions of 75 sedimentologically and petrographically characterized chert samples with ages ranging from similar to 2600 to 750 Ma using multi-collector inductively coupled plasma mass spectrometry. delta Si-30 values of the cherts analyzed in this study show a similar to 7 parts per thousand range, from -4.29 to +2.85. This variability can be explained in part by (1) simple mixing of silica derived from continental (higher delta Si-30) and hydrothermal (lower delta Si-30) sources, (2) multiple mechanisms of silica precipitation and (3) Rayleigh-type fractionations within pore waters of individual basins. We observe similar to 3 parts per thousand variation in peritidal cherts from a single Neoproterozoic sedimentary basin (Spitsbergen). This variation can be explained by Rayleigh-type fractionation during precipitation from silica-saturated porewaters. In some samples, post-dissolution and reprecipitation of silica could have added to this effect. Our data also indicate that peritidal cherts are enriched in the heavier isotopes of Si whereas basinal cherts associated with banded iron formations (BIF) show lower delta Si-30. This difference could partly be due to Si being derived from hydrothermal sources in BIFs. We postulate that the difference in delta Si-30 between non-BIF and BIF cherts is consistent with the contrasting genesis of these deposits. Low delta Si-30 in BIF is consistent with laboratory experiments showing that silica adsorbed onto Fe-hydroxide particles preferentially incorporates lighter Si isotopes. Despite large intrabasinal variation and environmental differences, the data show a clear pattern of secular variation. Low delta Si-30 in Archean cherts is consistent with a dominantly hydrothermal source of silica to the oceans at that time. The monotonically increasing delta Si-30 from 3.8 to 1.5 Ga appears to reflect a general increase in continental versus hydrothermal sources of Si in seawater, as well as the preferential removal of lighter Si isotopes during silica precipitation in iron-associated cherts from silica-saturated seawater. The highest delta Si-30 values are observed in 1.5 Ga peritidal cherts; in part, these enriched values could reflect increasing sequestration of light silica during soil-forming processes, thus, delivering relatively heavy dissolved silica to the oceans from continental sources. The causes behind the reversal in trend towards lower delta Si-30 in cherts younger than 1.5 Ga old are less clear. Cherts deposited 1800-1900 Ma are especially low delta Si-30, a possible indication of transiently strong hydrothermal input at this time. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the potential for increasing the tree cover and thereby the biomass and carbon as a mitigation option of three categories of wastelands, irrespective of their tenure, are considered. The area under wastelands in Himachal Pradesh, according to NRSA (2005), is estimated to be 2.83 Mha. Among the 28 categories of wastelands reported by NRSA, only 15 categories exist in Himachal Pradesh. In the present study, three land categories are considered for estimating the mitigation potential. They include: (i) Degraded forestland, (ii) Degraded community land and (iii) Degraded and abandoned private land. Choice of species or the mix of species to be planted on the three land categories considered for reforestation is discussed. Carbon pools considered in the present study are those, which account only for aboveground biomass, belowground biomass and soil organic carbon. This study estimates the mitigation potential at the state level considering land available under more than one category. It also provides a roadmap for future work in support of mitigation analysis and implementation.
Resumo:
This paper addresses the problem of multiple unmanned aerial vehicle (UAV) rendezvous when the UAVs have to perform maneuvers to avoid collisions with other UAVs. The proposed solution consists of using velocity control and a wandering maneuver, if needed, of the UAVs based on a consensus among them on the estimated time of arrival at the point of the rendezvous. This algorithm, with a slight modification is shown to be useful in tracking stationary or slowly moving targets with a standoff distance. The proposed algorithm is simple and computationally efficient. The simulation results demonstrate the efficacy of the proposed approach. DOI: 10.1061/(ASCE)AS.1943-5525.0000145. (C) 2012 American Society of Civil Engineers.