999 resultados para Earth movements
Resumo:
The selective oxidation of alkylaromatics is one of the main processes since the reaction products are important as intermediates in numerous industrial organic chemicals. Side-chain oxidation of alkyl aromatic compounds catalyzed by heterogeneous catalysts using cleaner peroxide oxidants is an especially attractive goal since classical synthetic laboratory procedures preferably use permanganate or acid dichromate as stoichiometric oxidants. In spite of many studies, there are very few which use hydrogen peroxide as a source of oxygen in the C-H activation of alkanes. Eflective utilization of ethylbenzene, available in the xylene stream of the petrochemical industry to more value added products is a promising one in chemical industry. The oxidation products of ethylbenzene are widely employed as intermediates in organic, steroid and resin synthesis.
Resumo:
The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.
Resumo:
The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.
Resumo:
A comparative study of acid-base properties and catalytic activity of Sn-La and Sn-Sm mixed oxides and their corresponding sulfate modified analogues are reported in this thesis. The catalytic activity and product selectivity in the decomposition of alcohols are correlated with the acid-base and redox properties of the catalyst systems under study The effect of catalyst preparation, pretreatment and various reaction parameters on the catalytic activity of sulfate modified oxides is investigated in the oxidative dehydrogenation reactions The experimental conditions are optimised to synthesise industrially important organic chemicals viz. 2,6 xylenol, o-cresol, N-methylanilne and N,N-dimethylaniline employing the mixed oxide systems. The effect of sulfate treatment on the catalytic activity of these systems in the alkylation reactions of phenol, anisole and aniline is also investigated and the merits and demerits of sulfate treatment are highlighted.
Resumo:
The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.
Resumo:
The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth
Resumo:
Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.
Resumo:
Entre el 14 i el 18 de març de 1998 es va celebrar a Barcelona la conferència Earth’s Changing Land sota la tutela dels programes internacionals Global Change in Terrestrial Ecosystems (GCTE) i Land Use and Land Cover Change (LUCC). L’objectiu principal de la trobada era presentar les darreres aportacions científiques sobre els efectes presents i previsibles del canvi global sobre els ecosistemes terrestres i la societat. Al mateix temps, es volia afavorir l’establiment de ponts de diàleg entre els professionals implicats en el canvi global
Resumo:
The JModel suite consists of a number of models of aspects of the Earth System. They can all be run from the JModels website. They are written in the Java language for maximum portability, and are capable of running on most computing platforms including Windows, MacOS and Unix/Linux. The models are controlled via graphical user interfaces (GUI), so no knowledge of computer programming is required to run them. The models currently available from the JModels website are: Ocean phosphorus cycle Ocean nitrogen and phosphorus cycles Ocean silicon and phosphorus cycles Ocean and atmosphere carbon cycle Energy radiation balance model (under development) The main purpose of the models is to investigate how material and energy cycles of the Earth system are regulated and controlled by different feedbacks. While the central focus is on these feedbacks and Earth System stabilisation, the models can also be used in other ways. These resources have been developed by: National Oceanography Centre, Southampton project led by Toby Tyrrell and Andrew Yool, focus on how the Earth system works.
Resumo:
The JModel suite consists of a number of models of aspects of the Earth System. The Java programmes model in detail aspects of the cycles of some major biogeochemical elements that exemplify the range of geochemical processes in marine environments.
Resumo:
Social Movements are decentralising in the modern world. Web 2.0 has driven latency structures in social movements, and made activism more personal than ever before, but it has also introduced the concept of slacktivism. Micro-Macro relationships are becoming important theoretical frameworks for Social Movement research on the Web - has the Global Justice Movement of 1999 become Global Justice Networks in 2013?
Resumo:
Monográfico con el título: 'Ensenyar geografia en un món en transformació'. Resumen tomado de la publicación
Resumo:
Analiza la geografía de los ríos así como la manera en que los asentamientos humanos en las regiones fluviales de todo el mundo han cambiado el paisaje. Un examen a través de estudios de casos, mapas, fotografías aéreas, ilustra los efectos que han tenido los seres humanos en estos terrenos y sobre el medio ambiente circundante. Tiene glosario y bibliografía.
Resumo:
Permite ver cómo se han ido formando los continentes a los largo de millones de años. Explica cómo se forma el paisaje así como el modo en que las personas y los asentamientos humanos lo cambian. Por último se examina cómo los cambios en el medio ambiente están afectando a los paisajes del mundo e incluye la discusión de por qué el clima puede cambiar en el futuro. El estudio de casos se utiliza para abrir la posibilidad de comparar y contrastar lo aprendido.
Resumo:
Explora la estructura de la Tierra, desde la cima de la montaña más alta a las profundidades oceánicas, desde el hielo polar hasta el calor de los desiertos, su atmósfera y el clima, la geología, los volcanes, los terremotos, las montañas y los lagos, entre otros, interesándose por la forma en que la Tierra está cambiando como resultado de la erosión, los volcanes, los terremotos y las actividades del hombre.