983 resultados para ETHANOL ELECTROOXIDATION
Pimenta pseudocaryophyllus inhibits virulence factors and promotes metabolic changes in Candidayeast
Resumo:
IntroductionThis is the first study to examine the in vitrosusceptibility and the expression of virulence factors in Candida species in the presence of Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae), a Brazilian plant known as paucravo. Additionally, the mechanisms of action of the crude ethanol extract and the ethyl acetate and aqueous fractions of this plant were investigated.MethodsThe in vitro susceptibility of Candida was tested using the broth microdilution method, whereas an XTT reduction assay was used for biofilms. Adherence was determined by counting the number of yeast cells that adhered to 100 oral epithelial cells, and hyphal formation was verified in the hyphal induction medium M199. Flow cytometry with propidium iodide and FUN-1 was performed to assess the mechanism of action.ResultsThe results revealed that the crude ethanol extract and the ethyl acetate and aqueous fractions of P. pseudocaryophyllusinhibited the growth of Candida isolates at a minimal inhibitory concentration (MIC) ranging from 64 to 256µg/mL, whereas the 50% sessile minimal inhibitory concentration (SMIC50) ranged from 512 to >1,024µg/mL. Adherence and hyphal formation were significantly reduced in the presence of the crude ethanol extract and both fractions. Although cell membrane injury was detected, the predominant mechanism of action appeared to be the alteration of yeast metabolism, as demonstrated by flow cytometry.ConclusionsOur results indicated that antifungal activity reduced the expression of virulence factors in yeast via the alteration of yeast metabolism, suggesting that the crude extract of P. pseudocaryophyllus and its fractions may contain novel antifungal agents.
Resumo:
Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.
Resumo:
Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.
Resumo:
Contemporary painting places, and will continue to place, several questions about its meaning, its chemical nature, its durability and the best way to preserve it. This research aims at putting together comprehensive data on vinyl based paints, including their components, their properties, their aging behavior and their response to selected cleaning products. In this project degradation mechanisms of vinyl binders and formulations used in the 20th and 21st century were studied. Stability over time of selected vinyl polymers was assessed through natural indoor and artificially aging. The objective was to enhance knowledge and understanding of vinyl emulsion formulations and their performance over time. Overall conservation state of pictorial layers namely, adhesion, cohesion and discoloration of selected case studies from the Portuguese artist Julião Sarmento (b.1948) was correlated with the observed molecular level changes studied in laboratory experiments. Sarmento’s paintings were chosen due to conservation concerns (discoloration) on some of his works from the 90’s. Besides, research was carried out to start increasing the knowledge of what can be expected of PVAc based paints in terms of response to conservation treatments namely, surface cleaning. Artificial aging showed that the most recent formulations which are based on a poly(vinyl acetate), poly(vinyl chloride) and polyethylene terpolymer are less stable when compared to some homopolymer formulations. From the four pigments studied, titanium dioxide rutile and a carbon based black proved to be stabilizers for both types of polymer. The mixture lithopone plus calcium carbonate has showed to have a photocatalytic effect on the binders. The studied paintings showed to be in an overall good state of conservation except for the paintings created in the 90’s with white glue and a mixture of white lithoponeand calcium carbonate. Discoloration of this white paint seems to be irreversible and ongoing and is still a major concern. The disapearance of the plasticizer was the only change detected. The current works created by Sarmento are expected to be more stable as they were painted using the rutile titanium dioxide. Immersion/cleaning tests showed that vinyl based paints can be susceptible to water and organic solvents like ethanol as some evidences point to the removal/diffusion of additives from the paint. The observations made point to the need to further proceed in this research field.
Resumo:
The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/(±)-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of (±)-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)
Screening of plants found in the State of Amazonas, Brazil for activity against Aedes aegypti larvae
Resumo:
Ethanol, methanol and water extracts representing mostly native plant species found in the Amazon region were prepared, respectively, by maceration, continuous liquid-solid extraction and infusion, followed by evaporation and freeze-drying. The freeze-dried extracts were tested for lethality toward Aedes aegypti larvae at test concentrations of 500 mg / mL. In general, methanol extracts exhibited the greatest larvicidal activity. The following 7 methanol extracts of (the parts of) the indicated plant species were the most active, resulting in 100% mortality in A. aegypti larvae: Tapura amazonica Poepp. (root), Piper aduncum L. (leaf and root), P. tuberculatum Jacq. (leaf, fruit and branch). and Simaba polyphylla (Cavalcante) W.W. Thomas (branch).
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
1300 ppm (1.3 g / L), water and ethanol extracts prepared from stems or roots of Picrolemma sprucei Hook. f. were lethal (85-90 % mortality) in vitro to Haemonchus contortus (Barber Pole Worm) larvae, a gastrointestinal nematode parasite found in domestic and wild ruminants. Neosergeolide and isobrucein B were isolated in 0.0083 and 0.0070 % yield from dry, ground P. sprucei stems (0.89 kg). Neosergeolide, isobrucein B and the anthelmintic drug standard levamisole all caused comparable mortality rates (68-77 %) in vitro to H. contortus at similar concentrations (81-86 ppm). The anthelmintic activity of P. sprucei infusions (teas), alcohol extracts, and neosergeolide and isobrucein B, has therefore been demonstrated for the first time.
Resumo:
Maytenus guyanensis Klotzch. is an Amazonian medicinal tree species known in Brazil by the common name chichuá and in Peru and Colombia by the name chuchuhuasi. It is used in traditional medicine as stimulant, tonic, and muscle relaxant, for the relief of arthritis, rheumatism, hemorrhoids, swollen kidney, skin eruptions, and skin cancer prevention, among others. Initially, different extraction solvents and methods were applied to dried, ground bark which made possible the preparation of extracts having both significant lethality to brine shrimp larvae (Artemia franciscana Leach) as well as antioxidant activity in vitro based on tests involving reactions with 2,2,-diphenyl-1-picrylhydrazyl (DPPH). Analysis of fractions from serial extractions with solvents of increasing polarity supports the notion that antioxidant activity is associated with compounds of intermediate polarity and cytotoxicity is associated with compounds of low to intermediate polarity. Variation of extraction time and conditions revealed that hot, continuous ethanol extraction provided good yields of bark extract in several hours. Hot extraction also provided ethanol extracts having greater lethality to brine shrimp and antioxidant activity (compared to the flavonoid rutin in semi-quantitative methods based on DPPH) than extracts obtained from maceration at room temperature. Freeze-dried ethanol extracts were prepared by: 1) maceration at room temperature and 2) hot extraction (eight hours) on several hundred gram scales and the latter extract was shown to have partial screening effects on UVB light. In this work, cytotoxic, antioxidant and potential sun-screening activity are shown for the first time in M. guyanensis.
Resumo:
Tese de Doutoramente em Ciências (área de especialização em Química).
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co-continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE). To obtain the composites, in a first stage, P(VDF-TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF-TrFE)/PEO blend membranes were prepared by solvent casting at 70° followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF-TrFE) porous membrane. After removing of the PEO polymer, a P(VDF-TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium-ion battery separator membranes and/or biostable supports for cell culture in biomedical applications.
Resumo:
The ethanol extract from stem bark of Sacoglottis uchi Huber (popularly known as uchi in the Amazon Region) was submitted to chromatographic fractionation. The dichloromethane fractions provided the pentacyclic triterpene 3-oxo-friedelin (1). The dichloromethane:methanol fractions provided the pentacyclic triterpenes pseudotaraxasterol (2), lupeol (3), a-amyrin (4), betulin (5), and methyl 2ß,3ß-dihydroxy-urs-12-en-28-oate (6) and a mixture of the steroids sitosterol (7) and stigmasterol (8). Their chemical structures were determined by NMR spectroscopy and comparison with spectroscopic data from the literature. All compounds are described for the first time in this species.
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
ABSTRACTThe composition of propolis depends on time, vegetation and the location of the collection area. The objective of this study was to determine the physicochemical characteristics, the concentration of phenol compounds and the antioxidant capacity of propolis of native stingless bees (Meliponinae)and Apis from the State of Tocantins. Extraction with 80% ethanol (v/v) was performed in order to obtain the extracts. Parameters examined were: propolis mass loss by desiccation at 105 ºC, ashes, wax concentration and pH. Furthermore, the propolis antioxidant activity was measured, as well as the total concentration of phenol compounds. The extracts were also analyzed by high performance liquid chromatography. The total concentration of phenol compounds varied between 121.78 and 631.29 (mg GAE g-1). The antioxidant activity expressed by the value of CE50 varied between 29.81 and 845.38 µg mL-1. High performance liquid chromatography analysis allowed us to infer the existence of phenol compounds. The results indicated that the studied propolis samples constitute good sources of natural antioxidants. The variety of phenol compounds identified in this study, and the diverse biological functions reported in literature for these compounds indicated that this stingless bee propolis (Meliponinae) and Apis has a high pharmacological potential.