957 resultados para ENERGY LANDSCAPE MODEL
Resumo:
In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.
Resumo:
We analyze the cost-effectiveness of electric utility ratepayer-funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential longterm demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate. Copyright © 2012 by the IAEE. All rights reserved.
Resumo:
We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.
Resumo:
We develop a methodology for testing Hicks's induced innovation hypothesis by estimating a product-characteristics model of energy-using consumer durables, augmenting the hypothesis to allow for the influence of government regulations. For the products we explored, the evidence suggests that (i) the rate of overall innovation was independent of energy prices and regulations; (ii) the direction of innovation was responsive to energy price changes for some products but not for others; (iii) energy price changes induced changes in the subset of technically feasible models that were offered for sale; (iv) this responsiveness increased substantially during the period after energy-efficiency product labeling was required; and (v) nonetheless, a sizable portion of efficiency improvements were autonomous.
Resumo:
The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.
Resumo:
A large portion of foreign assistance for climate change mitigation in developing countries is directed to clean energy facilities. To support international mitigation goals, however, donors must make investments that have effects beyond individual facilities. They must reduce barriers to private-sector investment by generating information for developers, improving relevant infrastructure, or changing policies. We examine whether donor agencies target financing for commercial-scale wind and solar facilities to countries where private investment in clean energy is limited and whether donor investments lead to more private investments. On average, we find no positive evidence for these patterns of targeting and impact. Coupled with model results that show feed-in tariffs increase private investment, we argue that donor agencies should reallocate resources to improve policies that promote private investment in developing countries, rather than finance individual clean energy facilities.
Resumo:
The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Electromagnetic processing of liquid metals involves dynamic change of the fluid volume interfacing with a melting solid material, gas or vacuum, and possibly a different liquid. Electromagnetic field and the associated force field are strongly coupled to the free surface dynamics and the heat-mass transfer. We present practical modelling examples of the flow and heat transfer using an accurate pseudo-spectral code and the k-omega turbulence model suitable for complex and transitional flows with free surfaces. The 'cold crucible' melting is modelled dynamically including the melting front gradual propagation and the magnetically confined free surrounding interface. Intermittent contact with the water-cooled segmented wall and the radiation heat losses are parts of the complex problem.
Resumo:
A casting route is often the most cost-effective means of producing engineering components. However, certain materials, particularly those based on Ti, TiAl and Zr alloy systems, are very reactive in the molten condition and must be melted in special furnaces. Induction Skull Melting (ISM) is the most widely-used process for melting these alloys prior to casting components such as turbine blades, engine valves, turbocharger rotors and medical prostheses. A major research project is underway with the specific target of developing robust techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (UK) is developing a computer model of the ISM process in close collaboration with the University of Birmingham (UK) where extensive melting trials are being undertaken. This paper describes the experimental measurements to obtain data to feed into and to validate the model. These include measurements of the true RMS current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the column of semi-levitated molten metal. Data are presented for Al, Ni and TiAl.
Resumo:
The first phase in the sign, development and implementation of a comprehensive computational model of a copper stockpile leach process is presented. The model accounts for transport phenomena through the stockpile, reaction kinetics for the important mineral species, oxgen and bacterial effects on the leach reactions, plus heat, energy and acid balances for the overall leach process. The paper describes the formulation of the leach process model and its implementation in PHYSICA+, a computational fluid dynamic (CFD) software environment. The model draws on a number of phenomena to represent the competing physical and chemical features active in the process model. The phenomena are essentially represented by a three-phased (solid liquid gas) multi-component transport system; novel algorithms and procedures are required to solve the model equations, including a methodology for dealing with multiple chemical species with different reaction rates in ore represented by multiple particle size fractions. Some initial validation results and application simulations are shown to illustrate the potential of the model.
Resumo:
The design and development of a comprehensive computational model of a copper stockpile leach process is summarized. The computational fluid dynamic software framework PHYSICA+ and various phenomena were used to model transport phenomena, mineral reaction kinetics, bacterial effects, and heat, energy and acid balances for the overall leach process. In this paper, the performance of the model is investigated, in particular its sensitvity to particle size and ore permeability. A combination of literature and laboratory sources was used to parameterize the model. The simulation results from the leach model are compared with closely controlled column pilot scale tests. The main performance characteristics (e.g. copper recovery rate) predicted by the model compare reasonably well with the experimental data and clearly reflect the qualitiative behavior of the process in many respects. The model is used to provide a measure of the sensitivity of ore permeability on leach behavior, and simulation results are examined for several different particle size distributions.
Resumo:
Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Resumo:
Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.
Resumo:
The lesser sandeel Ammodytes marinus is a key species in the North Sea ecosystem, transferring energy from planktonic producers to top predators. Previous studies have shown a long-term decline in the size of 0-group sandeels in the western North Sea, but they were unable to pinpoint the mechanism (later hatching, slower growth or changes in size-dependent mortality) or cause. To investigate the first 2 possibilities we combined 2 independent time series of sandeel size, namely data from chick-feeding Atlantic puffins Fratercula arctica and from the Continuous Plankton Recorder (CPR), in a novel statistical model implemented using Markov Chain Monte Carlo (MCMC). The model estimated annual mean length on 1 July, as well as hatching date and growth rate for sandeels from 1973 to 2006. Mean length-at-date declined by 22% over this period, corresponding to a 60% decrease in energy content, with a sharper decline since 2002. Up to the mid-1990s, the decline was associated with a trend towards later hatching. Subsequently, hatching became earlier again, and the continued trend towards smaller size appears to have been driven by lower growth rates, particularly in the most recent years, although we could not rule out changes in size-dependent mortality. Our findings point to major changes in key aspects of sandeel life history, which we consider are most likely due to direct and indirect temperature-related changes over a range of biotic factors, including the seasonal distribution of copepods and intra- and inter-specific competition with planktivorous fish. The results have implications both for the many predators of sandeels and for age and size of maturation in this aggregation of North Sea sandeels.