970 resultados para ELECTROCHEMICAL APPLICATIONS
Resumo:
Self-assembled monolayers (SAMs) modified electrodes exhibit unique behavior that can greatly benefit electrochemical sensing. This brief review highlights the applications of SAM modified electrodes in electroanalytical chemistry. After a general introduction, which includes the approaches for SAM development, different electrochemical systems for detecting inorganic and organic species are described and discussed. Special attention to the coupling of biological sensing element to the SAM is given, which can selectively recognize the analyte. Future prospects are also evaluated.
Resumo:
The aim of the thesis is to study the principles of the permanent magnet linear synchronous motor (PMLSM) and to develop a simulator model of direct force controlled PMLSM. The basic motor model is described by the traditional two-axis equations. The end effects, cogging force and friction model are also included into the final motor model. Direct thrust force control of PMLSM is described and modelled. The full system model is proven by comparison with the data provided by the motor manufacturer.
Resumo:
In liberalized electricity markets, which have taken place in many countries over the world, the electricity distribution companies operate in the competitive conditions. Therefore, accurate information about the customers’ energy consumption plays an essential role for the budget keeping of the distribution company and for correct planning and operation of the distribution network. This master’s thesis is focused on the description of the possible benefits for the electric utilities and residential customers from the automatic meter reading system usage. Major benefits of the AMR, illustrated in the thesis, are distribution network management, power quality monitoring, load modelling, and detection of the illegal usage of the electricity. By the example of the power system state estimation, it was illustrated that even the partial installation of the AMR in the customer side leads to more accurate data about the voltage and power levels in the whole network. The thesis also contains the description of the present situation of the AMR integration in Russia.
Resumo:
Streaming potential measurements for the surface charge characterisation of different filter media types and materials were used. The equipment was developed further so that measurements could be taken along the surfaces, and so that tubular membranes could also be measured. The streaming potential proved to be a very useful tool in the charge analysis of both clean and fouled filter media. Adsorption and fouling could be studied, as could flux, as functions of time. A module to determine the membrane potential was also constructed. The results collected from the experiments conducted with these devices were used in the study of the theory of streaming potential as an electrokinetic phenomenon. Several correction factors, which are derived to take into account the surface conductance and the electrokinetic flow in very narrow capillaries, were tested in practice. The surface materials were studied using FTIR and the results compared with those from the streaming potentials. FTIR analysis was also found to be a useful tool in the characterisation of filters, as well as in the fouling studies. Upon examination of the recorded spectra from different depths in a sample it was possible to determine the adsorption sites. The influence of an external electric field on the cross flow microflltration of a binary protein system was investigated using a membrane electroflltration apparatus. The results showed that a significant improvement could be achieved in membrane filtration by using the measured electrochemical properties to help adjust the process conditions.
Resumo:
After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes) also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.
Resumo:
The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.
Resumo:
In this work, composites formed from a mixture of V2O5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.
Resumo:
The aim of this work is to discuss some selected applications of square wave voltammetry published in the last five years. The applications focused here cover several electroanalytical fields such as: determination of pesticides; molecules with biological activity; metals and other environmental pollutants. Special attention is given to the work developed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos - IQSC - USP concerning the utilization of square wave voltammetry, with different kinds of electrodes, for the determination of pesticides in natural waters and active principles in pharmaceutical formulations. The new methodology is simple, fast and sensitive when compared with the traditional ones such as chromatography and spectrophotometry. The satisfactory results obtained provide alternative procedures for the quality control of drugs and the monitoring of pesticides in natural environments.
Resumo:
The aim of this work is to present the principal properties and applications of supporting electrolytes (SE) to students, teachers and researchers interested in electrode processes. Different aspects are discussed including the importance of SE in maintaining constant the activity coefficients and the diffusion coefficients and reducing the transport number of electroactive species. Its effect on the electrochemical kinetic parameters is also presented.
Resumo:
The use of the quartz crystal microbalance process, electrochemical impedance spectroscopy and surface plasmon resonance for characterizing thin films and monitoring interfaces is presented. The theorical aspects of QCM, EIS and SPR are introduced and the main application areas are outlined. Future prospects of the combined applications of QCM, EIS and SPR methods in the studies of interfacial processes at surfaces are also discussed.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The goal of this work is to show the use of undoped nanodiamond films as a new material for electrochemical and aerospace applications. Correlation between the applications and physico-chemical features of nano and conventional CVD polycrystalline diamond films are presented. An important and innovative application of these nanodiamonds is organic electrosynthesis, including pharmaceutical and water disinfection products, as well as electroanalytical applications, for example, development of biosensors for detection of glucose, glutamate and dopamine. In aeronautics and space developments, these nanodiamonds could be used as electrodes in rechargable batteries and in tribological investigations.
Resumo:
Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot
Resumo:
The use of ionic liquid analogues as solvents has increased in order to substitute the aqueous solvents in some applications in which the side reactions are undesirable. However these solvents prepared from the mixture in the eutectic proportion of species establishing hydrogen bonds are susceptible of electrochemical reactions. The study of platinum deposition on vitreous carbon in an ionic liquid analogue (2 urea: choli ne chloride) is presented; the electrochemical study has permitted to interpret the sequence of the metal deposition process and simultaneously to analyze the behavior of the ionic liquid analogue along the process. Reduction reactions of the solvent relat ed both to the electronation of choline and hydrogen formation have been detected. Different substrata have been used in order to test the possibility and the extent of these reactions depending on the nature of material. The results indicate that the feas ible electrochemical window of the substrate/solvent is highly dependent of the kind of substrate; the negative limit is tied by the massive hydrogen reaction, reaction enhanced by the electrocatalytic character of the substrate.
Resumo:
Nanomaterials make up an emerging area in Chemistry and in the science of materials. This area constitutes the development of methods for synthesizing nanoscopic particles of a given material used for scientific investigation. Nanomaterials have a wide range of commercial possibilities and technological applications, including their use in analytical chemistry, as well as in electronics, optics, engineering, medicine, devices for liberation of drugs, bioencapsulation, among others. This paper presents a summary about nanoelectrodes, devices built from nanoparticles, which show great potential as electrochemical tools in many different types of analysis. The purpose of this paper is to review the construction methodologies of nanoelectrodes, and to point out their successful applicability in the various fields of immune assays and other analytical procedures with quantitative purposes.