987 resultados para Dynamical evolution
Resumo:
核核糖体DNA(nrDNA)已被作为一个重要的标记,用于推断很多分类等级上的系统发育关系。相对于在被子植物中的快速致同进化,nrDNA在裸子植物中的致同进化速率低,且ITS和5S-NTS区有着较大的长度变异,这种现象在松科植物中尤为明显。在本研究中,我们克隆并测定了银杉属的5S rDNA以及冷杉属、银杉属、雪松属、油杉属、长苞铁杉属、金钱松属与铁杉属的ITS序列。基于获得的新数据,再结合前人报导的其它属的数据,我们探讨了如下四个问题: (1)松科 nrDNA ITS1 亚重复单位的组成、分布及进化;(2)ITS1区的长度变异与亚重复单位数目的关系以及它们的系统学意义;(3)松科ITS1的二级结构特征;(4)银杉5S rDNA编码区及非转录间隔区的结构特征。主要研究结果如下: 1. ITS区的序列分析ITS区的克隆及序列分析发现:(1) 松科ITS1的长度变异范围为 944-3271 bp, 这是目前已报导的真核生物中属间ITS变异最大的类群之一;(2) 所有松科植物的ITS区域都包含亚重复单位,亚重复单位的数目从2到9,并且这些亚重复单位可分为两种类型,即不含保守核心序列(5’-GGCCACCCTAGTC ) 的长亚重复单位(LSR)和含上述保守核心序列的短亚重复单位(SSR);(3) ITS1区的巨大长度变异主要归因于亚重复单位的数量变异; (4) ITS1区的GC含量与 它的序列长度和亚重复单位的数目有一定关系,并能够提供一些系统发育信息,特别是支持云杉属、松属和银杉属三者具有很近的亲缘关系。 2. ITS1亚重复单位的系统发育分析为了研究亚重复单位的进化关系,我们用最大似然法和最大简约法构建了松科ITS1亚重复单位的系统发育树。结果表明:(1)在ML和MP树中可发现有共同的五个分支; (2) 银杉比松科其它属拥有更多的SSR,且该属的所有9个SSR在系统树中构成一个单系支,表明它们是在银杉属内发生重复的;(3)一些SSR在属间和种间具有同源性,可为nrDNA ITS 的进化历史以及松科的系统发育 研究提供重要信息;(4)亚重复单位的多次重复以及伴随的重组可能是导致LSR 和SSR在松科不同属中分布式样不同的原因。 3. 松科ITS1的二级结构 用 Mfold 3.2 软件对松科所有11个属的ITS1区进行了二级结构预测,共获得了563个最低自由能折叠。结合以前关于松科二级结构的报导,我们分析的结果表明:(1) 松科ITS1的二级结构主要由几个延展的发夹结构组成;(2) 构象的复杂性与亚重复的数目呈正相关;(3)配对的亚重复单位通常在保守核心区(5’-GGCCACCCTAGTC ) 处有部分重叠,并且构成一个长茎,而其它的亚重复单位通常会自身折叠,且保守核心区的部分出现在发夹结构的环中。 4. 银杉5S rDNA 序列分析 我们对来自银杉不同群体的3个个体的5S rDNA进行了克隆,共获得 45 条序列,分析结果表明:(1) 绝大多数银杉5S rDNA编码区长度为120 bp, 以GGG 开头,以CTC结尾,编码区出现的碱基替代主要为转换;(2) 银杉与其它裸子植物相比,5S rDNA基因编码区具很高的相似性(90-99%); (3)间隔区含有一个poly-C和一个poly-T结构、两个TC丰富区以及五个GC丰富区。根据长度和序列特征,银杉的5S rDNA间隔区可分为三种类型:Type A 长751-764 bp,Type B 长770-807 bp (含一个32 bp的插入),Type C 长581-594 bp; (5)长间隔区(Type A,Type B )中含有两个148-175 bp的串联亚重复单位,该亚重复单位与短间隔区(Type C )中的一段143 bp的序列具有较高的相似性(56.0-66.8%)。 5. 银杉5S rRNA的二级结构 Mfold 3.2 预测结果表明:(1)银杉5S rRNA二级结构包括5个双螺旋区(干区)(Ⅰ-Ⅴ)、2个发夹结构环区(C和D)、3个中间环区(B1、B2 和 E)和1个铰链区(A), 铰链区为三个双螺旋的结合处;(2) 二级结构中的环区通常比双螺旋区更加保守;(3)在5个双螺旋中,I 和 IV 区有较高的碱基替代率。
Resumo:
We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.