906 resultados para Dome Matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIM: Because the pericapillary basement membrane in skeletal muscles of patients with chronic critical limb ischemia (CLI) is thickened, we determined the expression patterns of genes involved in collagen metabolism, using samples from 9 CLI patients, 4 patients with acute limb ischemia and 4 healthy controls. METHODS: Gene array analysis, quantitative RT-PCR and semiquantitative grading of immunohistochemical reactivity were performed to determine mRNA/cDNA and protein concentrations. RESULTS: In CLI patients compared to controls, cDNA levels of matrix metalloproteinase (MMP)-9 and MMP-19 were higher, collagen type IV chains A1 and A2, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were similar and MMP-2 were lower. On the protein level, MMP-2, MMP-9, MMP-19 and TIMP-1 were more abundantly expressed. In skeletal muscles from patients with acute limb ischemia, cDNA and protein levels of MMP-9, MMP-19, collagen type IV chains, TIMP-1 and TIMP-2 were high. MMP-2 was elevated at the protein but decreased on the cDNA level. CONCLUSION: Expression of basement membrane components in skeletal muscles of CLI and acute limb ischemia patients is altered, possibly contributing to the pathogenesis of peripheral arterial disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Autogenous bone is the most successful bone-grafting material; however, multiple disadvantages continue to drive developments of improved methods for bone regeneration. AIM: The aim of the present study was to test the hypothesis that an arginine-glycine-aspartic acid (RGD) modified polyethylene glycol-based matrix (PEG) containing covalently bound peptides of the parathyroid hormone (PTH(1-34)) enhances bone regeneration to a degree similar to autogenous bone. MATERIAL AND METHODS: Six American foxhounds received a total of 48 cylindrical titanium implants placed in the mandible between the first premolar and the second molar. Five, respectively, 7 months following tooth extraction, implants were placed into the center of surgically created defects. This resulted in a circumferential bone defect simulating an alveolar defect with a circular gap of 1.5 mm. Four treatment modalities were randomly allocated to the four defects per side: (1) PEG-matrix containing 20 microg/ml of PTH(1-34), and 350 microg/ml cys-RGD peptide, (2) PEG alone, (3) autogenous bone and (4) empty defects. Histomorphometric analysis was performed 4 and 12 weeks after implantation. The area fraction of newly formed bone was determined within the former defect and the degree of bone-to-implant contact (BIC) was evaluated both in the defect region and in the apical region of the implant. For statistical analysis ANOVA and subsequent pairwise Student's t-test were applied. RESULTS: Healing was uneventful and all implants were histologically integrated. Histomorphometric analysis after 4 weeks showed an average area fraction of newly formed bone of 41.7+/-1.8% for matrix-PTH, 26.6+/-4.1% for PEG alone, 43.9+/-4.5% for autogenous bone, and 28.9+/-1.5% for empty defects. After 12 weeks, the respective values were 49.4+/-7.0% for matrix-PTH, 39.3+/-5.7% for PEG alone, 50.5+/-3.4% for autogenous bone and 38.7+/-1.9% for empty defects. Statistical analysis after 4 and 12 weeks revealed significantly more newly formed bone in the PTH(1-34) group compared with PEG alone or empty defects, whereas no difference could be detected against autogenous bone. Regarding BIC no significant difference was observed between the four treatment groups neither at 4 nor at 12 weeks. CONCLUSION: It is concluded that an RGD-modified PEG hydrogel containing PTH(1-34) is an effective matrix system to obtain bone regeneration.