979 resultados para Dispute settlement mechanism
Resumo:
Based on the concept of dinuclear system, considering the strong competition between fusion and quasiffision processes, by solving the master equation numerically to calculate the fusion probability of superheavy nuclei, we have estimated the excitation functions for the reactions Ti-50, Fe-58 + Pb-208, Bi-209, and the experimental data are basically reproduced. For different incident energies and different angular momentum, the effects on fusion and survival probability and the contribution to evaporation residue cross section have been given. These results help to further understand the mechanism for, synthesizing superheavy nuclei.
Resumo:
It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton-halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus Li-11 is more loosely than that of the proton-halo nucleus Al-23 in this paper. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei.
Resumo:
The processes of transfer ionization in He2+ -He collisions at energies ranging from 20 to 40 keV have been studied experimentally by means of cold target recoil ions momentum spectroscopy. From the longitudinal momentum spectra of recoil ions, different mechanisms of transfer ionization have been obtained. The results show that one of the electrons of helium atom being captured into the ground state of projectile ion He2+ and the other one emitted to the continuum state of projectile or target are the dominant mechanisms of transfer ionization. The autoionization cross section of projectile after two-electron capture into a double excited state is small. Transfer ionization for one target electron capture into ground state and the other one into the continuum of projectile mainly occurs at large impact parameter collisions.
Resumo:
利用冷靶反冲离子动量谱仪,对低能He2+-He碰撞反应中产生的反冲靶离子和炮弹离子进行了符合测量,根据反冲靶离子的动量,研究了转移电离过程中的电荷转移机理.实验结果表明:在20—40keV能量范围内,靶原子上的一个电子俘获到炮弹离子的基态,另一个电子直接发射到靶的连续态的直接电离及另一个电子俘获到炮弹离子的连续态的过程(ECC)是最主要的转移电离机理,且ECC过程主要发生在大碰撞参数条件下;炮弹离子俘获两个电子处在双激发态的自电离过程的贡献很小.
Resumo:
Within the concept of the dinuclear system (DNS), a dynamical model is used for describing the formation of superheavy residues in massive fusion reactions, in which the capture of two colliding nuclei, the formation and de-excitation of the compound nucleus are described by using a barrier distribution method, solving master equations numerically and statistical approach, respectively. Using the DNS model, the production cross sections of superheavy nuclei are calculated and compared with the available experimental data. The isotopic dependence of the cross sections to produce the superheavy element Z=116 by the two types of the reactions is discussed and the possible reasons influencing the isotopic trends are analyzed systematically.
Resumo:
通过25MeV/u86Kr离子辐照叠层结晶聚对苯二甲酸乙二醇酯膜(PET),在不同的电子能损(3.407.25keV/nm)和离子注量(5×10113×1012ions/cm2)辐照条件下,对Kr离子在PET中引起的辐照损伤效应进行了研究。借助傅里叶变换红外光谱分析,通过对样品的红外吸收峰进行扣除基底后的Lorentz拟合,分析了与主要官能团对应的吸收峰强度的变化趋势,研究了化学结构与组分在重离子辐照下的变化规律;利用X射线衍射光谱仪测量,研究了Kr离子在PET潜径迹中引起的非晶化过程,并通过对吸光度和非晶化强度随离子注量的指数衰减规律的分析,获得了不同电子能损离子辐照PET时主要官能团的损伤截面和非晶化截面及对应的潜径迹半径。
Resumo:
In this paper, silver-loaded TiO2 photocatalyst was prepared by photochemical impregnation method and characterized by transmission electron microscopy (TEM), diffuse reflectance spectra (DRS), photooxidation of phenol and photoreduction of Cr(VI). Electron paramagnetic resonance (EPR) was used to detect photoproduced paramagnetic radicals. The correlation of photocatalytic activity and photogenerated reactive species was discussed, and the mechanism of silver-loaded TiO2 for enhancement of photocatalytic activity was elucidated. The results show that deposited silver on TiO2 Surface acts as a site where electrons accumulate. The better separation between electrons and holes on the modified TiO2 surface allowed more efficiency for the oxidation and reduction reactions. The enhanced photocatalytic activity was mainly attributed to the increased amounts of O-2(.-) reactive species and surface Ti3+ reactive center on silver-loaded TiO2 photocatalyst. (C) 2004 Published by Elsevier B.V.
Resumo:
The dissociation and isomerization reaction mechanism on the ground-state potential energy surface for CH2ClI are investigated by ab initio calculations. It is found that the isomer iso-CH2I-Cl can be produced from either the recombination of the photodissociation. fragments or the isomerization reaction of CH2ClI, rather than from isomerization reaction of iso-CH2Cl-I. Further explanations of experimental results are also presented. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.
Resumo:
The reactions of (1) CH4 + MgO --> MgOH. + CH3. and (2) CH4 + MgO --> Mg + CH3OH have been studied on the singlet spin state potential energy surface at the MP2/6-311+G(2d,2p) level. These two reaction channels, both involving intermediates and transition states, have been rationalized by the structures of the species involved, natural bond orbital (NBO), and vibrational frequency analysis. We have considered two initial interacting models between CH4 and MgO: a collinear C-H approach to the O end of the MgO forming the MgOCH4 complex with C-3nu symmetry and three hydrogen atoms of the methane point to the Mg end of the MgO forming the OMgCH4 complex with C-1 symmetry. The calculations predict that reactions 1 and 2 are exothermic by 39.8 and 86.5 kJ mol(-1), respectively. Also, the former reaction proceeds more easily than the latter, and the complex HOMgCH3 is energetically preferred in the reaction of MgO + CH4.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.