990 resultados para Dislocation Nucleation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the article is to present a unified model for the dynamic mechanical response of ceramics under compressive stress states. The model incorporates three principal deformation mechanisms: (i) lattice plasticity due to dislocation glide or twinning; (ii) microcrack extension; and (iii) granular flow of densely packed comminuted particles. In addition to analytical descriptions of each mechanism, prescriptions are provided for their implementation into a finite element code as well as schemes for mechanism transitions. The utility of the code in addressing issues pertaining to deep penetration is demonstrated through a series of calculations of dynamic cavity expansion in an infinite medium. The results reveal two limiting behavioral regimes, dictated largely by the ratio of the cavity pressure p to the material yield strength σY. At low values of p/σY, cavity expansion occurs by lattice plasticity and hence its rate diminishes with increasing σY. In contrast, at high values, expansion occurs by microcracking followed by granular plasticity and is therefore independent of σY. In the intermediate regime, the cavity expansion rate is governed by the interplay between microcracking and lattice plasticity. That is, when lattice plasticity is activated ahead of the expanding cavity, the stress triaxiality decreases (toward more negative values) which, in turn, reduces the propensity for microcracking and the rate of granular flow. The implications for penetration resistance to high-velocity projectiles are discussed. Finally, the constitutive model is used to simulate the quasi-static and dynamic indentation response of a typical engineering ceramic (alumina) and the results compared to experimental measurements. Some of the pertinent observations are shown to be captured by the present model whereas others require alternative approaches (such as those based on fracture mechanics) for complete characterization. © 2011 The American Ceramic Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation has been made into the plastic deformation behavior of a Monel alloy deformed at high strain rate of 10(5) s(-1) by split Hopkinson bar. The results reveal that there are some equiaxed grains with an average size of 150 nm in diameter in the center of the shear bands, suggesting that this microstructure characteristics be developed by dynamic recrystallization, arising from the deformation and the rapid temperature rise in the band. Analysis shows that the plastic strain rate and the mobile dislocation density play a key role in the new crystallized grain formation and growth. Based on grain boundary energy change and diffusion mechanism, the grain growth kinetics is developed for plastic deformation at a high strain rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical solutions of or(R) given by two different methods (Samsonov et al., 2003; and Lu et al., 2005) are compared with the result that they are coincident closely (the difference is within 4%). We conclude that it is necessary to consider the Tolman correction in the calculation of fluid dynamics in carbon nanotubes. Although our conclusion is the same as that of Prylutskyy et al. (2005), the sign of our Tolman correction is opposite to theirs, and the difference can be attributed to the errors appeared in the paper of Prylutskyy et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported that work softening takes place during room-temperature rolling of nanocrystalline Ni at an equivalent strain of around 0.30. The work softening corresponds to a strain-induced phase transformation from a face-centered cubic (fcc) to a body-centered cubic (bcc) lattice. The hardness decreases with increasing volume fraction of the bcc phase. When the deformed samples are annealed at 423 K, a hardening of the samples takes place. This hardening by annealing can be attributed to a variety of factors including the recovery transformation from the bcc to the fcc phase, grain boundary relaxation, and retardation of dislocation gliding by microtwins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic technique is used to detect the velocity change of stress wave propagated in the cement mortar immersed in the solution of sodium sulfate for 425 days. Also the density change of specimens at different erosion time is measured. By curve fitting, the effect of solutions' concentration and water/cement ratio on the damage evolution is analyzed. The SEM observation on the growth of delayed ettringite is also performed. It shows that the damage evolution of specimens attacked by sulphate solution is dominantly induced by the nucleation and growth of delayed ettringite, and the average size of microvoids in cement mortar affects the damage evolution significantly. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel stress-strain relation with two stages of linear elastic deformation is observed in [0 0 0 1]-oriented ZnO nanorods under uniaxial tensile loading. This phenomenon results from a phase transformation from wurtzite (WZ, P6(3)mc space group) to a body-centered tetragonal structure with four-atom rings (denoted as BCT-4) belonging to the P4(2)/mnm space group. The analysis here focuses on the effects of nanorod size and temperature on the phase transformation and the associated mechanical behavior. It is found that as size is increased from 19.5 to 45.5 angstrom, the critical stress for nucleation of the transformation decreases by 25% from 21.90 to 16.50 GPa and the elastic moduli of the WZ- and BCT-4-structured nanorods decrease by 24% (from 299.49 to 227.51 GPa) and 38% (from 269.29 to 166.86 GPa), respectively. A significant temperature effect is also observed, with the critical stress for transformation initiation decreasing 87.8% from 17.89 to 2.19 GPa as temperature increases from 300 to 1500 K. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observation of a deformation twin formed by a recently proposed self-thickening, cross-slip twinning mechanism. This observation verifies one more twinning mechanism, in addition to those reported before, in nanocrystalline face-centered-cubic metals. In this mechanism, once the first Shockley partial is emitted from a grain boundary, and cross slips onto another slip plane, a deformation twin could nucleate and grow in both the primary and cross-slip planes without requiring the nucleation of additional Shockley partials from the grain boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recoverable plate impact testing technology has been developed for studying fracture mechanisms of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration and high loading rates, up to 10(8) MPam(1/2)s(-1), can be produced. Dynamic failure tests of Hard-C 60# steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Experimental results show that the nucleation and growth of several microcracks ahead of the crack tip, and the interactions between them, induce unsteady crack growth. Failure mode transitions during crack growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based on experimental observations, a discontinuous crack growth model was established. Analysis of the crack growth mechanisms using our model shows that the shear crack extension is unsteady when the extending speed is between the Rayleigh wave speed c(R) and the shear wave speed c(S). However, when the crack advancing speed is beyond c(S), the crack grows at a steady intersonic speed approaching root 2c(S). It also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all the subcracks causes the main crack to grow at a stable intersonic speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.