962 resultados para Dimensional stability
Resumo:
Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.
Resumo:
The use of electroacoustic analogies suggests that a source of acoustical energy (such as an engine, compressor, blower, turbine, loudspeaker, etc.) can be characterized by an acoustic source pressure ps and internal source impedance Zs, analogous to the open-circuit voltage and internal impedance of an electrical source. The present paper shows analytically that the source characteristics evaluated by means of the indirect methods are independent of the loads selected; that is, the evaluated values of ps and Zs are unique, and that the results of the different methods (including the direct method) are identical. In addition, general relations have been derived here for the transfer of source characteristics from one station to another station across one or more acoustical elements, and also for combining several sources into a single equivalent source. Finally, all the conclusions are extended to the case of a uniformly moving medium, incorporating the convective as well as dissipative effects of the mean flow.
Resumo:
The activity of K sub 2 O in a mixture of alpha -alumina and potassium beta -alumina has been determined using a solid state galvanic cell in the temperature range 600-1000K. The cell is written such that the right hand electrode is positive. The solid electrolyte consisted of a dispersion of alpha -alumina ( approx 15 vol.%) in a matrix of K beta -alumina. The emf of the cell was found to be reversible and to vary linearly with temperature. From the emf and auxiliary data on In sub 2 O sub 3 and K sub 2 O from the literature, the activity of K sub 2 O in the two-phase mixture is obtained. The standard free energy of formation of K beta -alumina from component oxides is given. Graphs.
Resumo:
The hazards associated with major accident hazard (MAN) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.
Resumo:
Starting from the exact general relativistic expression for the total energy of selfgravitating spherically distributed matter and using the minimum energy priciple, we calculate the upper mass limit for a neutron star to be 3.1 solar masses.
Resumo:
The use of appropriate finite elements in different regions of a stressed solid can be expected to be economical in computing its stress response. This concept is exploited here in studying stresses near free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is considered to illustrate the application of the concept. The laminate is modelled as a combination of three distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the two regions. Significant reduction in the problem size and hence in the computational time and cost have been achieved at almost no loss of accuracy.
Resumo:
The seismic slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India, is presented in this paper. The rock slopes are composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Seismic slope stability analysis of the slope under consideration is carried out using both pseudo-static approach and time response approach as the site is located in seismic zone V as per the earth quake zonation maps of India. Stability of the slope is studied numerically using program FLAC. The results obtained from the pseudo-static analysis are presented in the form of Factor of Safety (FOS) and the results obtained from the time response analysis of the slope are presented in terms of horizontal and vertical displacements along the slope. The results obtained from both the analyses confirmed the global stability of the slope as the FOS in case of pseudo-static analysis is above 1.0 and the displacements observed in case of time response analysis are within the permissible limits. This paper also presents the results obtained from the parametric analysis performed in the case of time response analysis in order to understand the effect of individual parameters on the overall stability of the slope.
Resumo:
Use of natural xanthine derivates in medicine is complicated with their physical properties. Theobromine is poorly soluble while theophylline is highly sensitive to hydration. The aim of this study was to improve bioavailability of xanthines by co-crystallization, theophylline was also cocrystallized with carboxylic acids (capric, citric, glutaric, malenic, malonic, oxalic, stearic, succinic) and HPMC. Co-crystallization was performed by slow evaporation and ball milling. Physical stability was checked by wet granulation and water sorption methods, solubility was measured by intrinsic tablet dissolution. Theobromine formed co-crystal with other xanthines and theophylline interacted with all acids except stearic and HPMC, the latter showed alternative interactions based on hydrogen bonding. Hydration resistance was good in theophylline:succinic acid co-crystal and excellent in complexes containing capric, stearic acids and HPMC. Theophylline:HPMC showed improved solubility. The reported approach can promote use of xanthines and can be recommended for other compounds with similar problems.
Resumo:
The thermal stability of ring-substituted arylammonium nitrates has been investigated using thermal methods of analysis. The decomposition temperature of meta- and para-substituted derivatives is found to be linearly related to the Hammett substituent constant σ. The activation energy for decomposition determined by isothermal gravimetry increases with the increasing basicity of the corresponding amine. The results suggest that the primary step in the decomposition process of these salts is proton abstraction by the anion from the arylammonium ion.
Resumo:
We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.