961 resultados para Dim Target Detection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is one of the most important bacteria that cause disease in humans, and methicillin-resistant S. aureus (MRSA) has become the most commonly identified antibiotic-resistant pathogen in many parts of the world. MRSA rates have been stable for many years in the Nordic countries and the Netherlands with a low MRSA prevalence in Europe, but in the recent decades, MRSA rates have increased in those low-prevalence countries as well. MRSA has been established as a major hospital pathogen, but has also been found increasingly in long-term facilities (LTF) and in communities of persons with no connections to the health-care setting. In Finland, the annual number of MRSA isolates reported to the National Infectious Disease Register (NIDR) has constantly increased, especially outside the Helsinki metropolitan area. Molecular typing has revealed numerous outbreak strains of MRSA, some of which have previously been associated with community acquisition. In this work, data on MRSA cases notified to the NIDR and on MRSA strain types identified with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal cassette chromosome mec (SCCmec) typing at the National Reference Laboratory (NRL) in Finland from 1997 to 2004 were analyzed. An increasing trend in MRSA incidence in Finland from 1997 to 2004 was shown. In addition, non-multi-drug resistant (NMDR) MRSA isolates, especially those resistant only to methicillin/oxacillin, showed an emerging trend. The predominant MRSA strains changed over time and place, but two internationally spread epidemic strains of MRSA, FIN-16 and FIN-21, were related to the increase detected most recently. Those strains were also one cause of the strikingly increasing invasive MRSA findings. The rise of MRSA strains with SCCmec types IV or V, possible community-acquired MRSA was also detected. With questionnaires, the diagnostic methods used for MRSA identification in Finnish microbiology laboratories and the number of MRSA screening specimens studied were reviewed. Surveys, which focused on the MRSA situation in long-term facilities in 2001 and on the background information of MRSA-positive persons in 2001-2003, were also carried out. The rates of MRSA and screening practices varied widely across geographic regions. Part of the NMDR MRSA strains could remain undetected in some laboratories because of insufficient diagnostic techniques used. The increasing proportion of elderly population carrying MRSA suggests that MRSA is an emerging problem in Finnish long-term facilities. Among the patients, 50% of the specimens were taken on a clinical basis, 43% on a screening basis after exposure to MRSA, 3% on a screening basis because of hospital contact abroad, and 4% for other reasons. In response to an outbreak of MRSA possessing a new genotype that occurred in a health care ward and in an associated nursing home of a small municipality in Northern Finland in autumn 2003, a point-prevalence survey was performed six months later. In the same study, the molecular epidemiology of MRSA and methicillin-sensitive S. aureus (MSSA) strains were also assessed, the results to the national strain collection compared, and the difficulties of MRSA screening with low-level oxacillin-resistant isolates encountered. The original MRSA outbreak in LTF, which consisted of isolates possessing a nationally new PFGE profile (FIN-22) and internationally rare MLST type (ST-27), was confined. Another previously unrecognized MRSA strain was found with additional screening, possibly indicating that current routine MRSA screening methods may be insufficiently sensitive for strains possessing low-level oxacillin resistance. Most of the MSSA strains found were genotypically related to the epidemic MRSA strains, but only a few of them had received the SCCmec element, and all those strains possessed the new SCCmec type V. In the second largest nursing home in Finland, the colonization of S. aureus and MRSA, and the role of screening sites along with broth enrichment culture on the sensitivity to detect S. aureus were studied. Combining the use of enrichment broth and perineal swabbing, in addition to nostrils and skin lesions swabbing, may be an alternative for throat swabs in the nursing home setting, especially when residents are uncooperative. Finally, in order to evaluate adequate phenotypic and genotypic methods needed for reliable laboratory diagnostics of MRSA, oxacillin disk diffusion and MIC tests to the cefoxitin disk diffusion method at both +35°C and +30°C, both with or without an addition of sodium chloride (NaCl) to the Müller Hinton test medium, and in-house PCR to two commercial molecular methods (the GenoType® MRSA test and the EVIGENETM MRSA Detection test) with different bacterial species in addition to S. aureus were compared. The cefoxitin disk diffusion method was superior to that of oxacillin disk diffusion and to the MIC tests in predicting mecA-mediated resistance in S. aureus when incubating at +35°C with or without the addition of NaCl to the test medium. Both the Geno Type® MRSA and EVIGENETM MRSA Detection tests are usable, accurate, cost-effective, and sufficiently fast methods for rapid MRSA confirmation from a pure culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incursions of plant pests and diseases pose serious threats to food security, agricultural productivity and the natural environment. One of the challenges in confidently delimiting and eradicating incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to complex decisions regarding when, where and how to search. Recent modelling investigations of surveillance performance have optimised the output of simulation models, and found that a risk-weighted randomised search can perform close to optimally. However, exactly how quarantine and surveillance strategies should change to reflect different dispersal modes remains largely unaddressed. Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to gain broad insights into the relative roles played by different spread modes in propagating an invasion, and how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and surveillance. We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual connectivity between sites, but surveillance measures enable early detection and successfully lead to suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites. Our model provides the basis to develop essential insights into the effectiveness of different surveillance and quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of dispersal processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

VP6, the intermediate capsid protein of the virion, specifies subgroup specificity of rotavirus, It is also the most conserved, both at nucleotide and amino acid levels, among group A rotaviruses and is the target of choice for rotavirus detection, In this study we report the sequence of the subgroup I (SGI)-specific VP6 from the serotype G2 strain IS2 isolated from a child suffering from acute diarrhoea in Bangalore ana its comparison with the published VP6 sequences. Interestingly, IS2 gene 6 shared highest homology with that from bovine UK strain and the protein contained substitutions by lysine at amino acid positions 97 and 134, In contrast, the amino acids Met and Glu/Asp at these respective positions are highly conserved in all the other group A rotaviruses sequenced so far, These observations have obvious implications for the evolution of serotype G2 and G2-like strains circulating in India, The SGI VP6, of a human rotavirus, possessing epitopes that are conformationally similar to those found in the native protein in the virion, was successfully expressed in E. coli and purified for the first time by single-step affinity chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [8], we recently presented two computationally efficient algorithms named B-RED and P-RED for random early detection. In this letter, we present the mathematical proof of convergence of these algorithms under general conditions to local minima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.