922 resultados para Digestive tube
Resumo:
Abstract. 1. Learning may enable insects to obtain nectar from flowers more efficiently. Learning in nectar foraging has been shown primarily in studies of bees and butterflies. Here, learning is demonstrated in the nectar foraging behaviour of a noctuid moth, Helicoverpa armigera. 2. The present studies show that: (1) previous experience with a flowering host species increases the probability of that species being selected for nectar foraging, and (2) previous experience of a particular flower type (food source at bottom or top of the corolla tube) increases the likelihood of the food source being found when that flower type is being searched. 3. The implications of these findings for understanding the pattern of oviposition observed in wild populations of this important pest species are discussed.
Resumo:
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.
Resumo:
Ab initio density functional calculations were performed to study finite-length zigzag (7, 0) @ (16, 0) double-walled carbon nanotubes (DWCNTs) with H-termination at the open ends. We find that such a DWCNT nanodot displays a very large magnetic moment at the zigzag edges and the ground state displays symmetric anti-ferromagnetic coupling. When an external electric field is applied along the direction of tube axis, a gap is opened for one spin channel, whereas another spin channel remains metallic, i.e. half metallicity occurs. Our results suggest an important new avenue for the development of CNT-based spintronic materials with enhanced properties.
Resumo:
We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.
Resumo:
In this work, ab initio density functional theory (DFT) calculations are performed to study the structural and electronic properties of diazonium reagent functionalized (4, 4) single-walled carbon nanotube (SWCNT). We find the aryl group covalently bonds with SWCNT and prefers to be perpendicular to the side wall of nanotube. It has a rotational barrier of 0.35 eV around the formed aryl-tube bond axis and should be thermodynamically stable at room temperature. Additionally, new peaks appeared around the Fermi energy in the density of state (DOS) due to the weak band dispersion. Increasing of the coverage of the functional group will result in significant upshift of the Fermi level.
Resumo:
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.
Resumo:
High temperature superconductor precursor billets (feed rods) have been developed for loading into silver tubes. The billets are loaded prior to rolling or drawing operations in PIT wire manufacture. Investigations have shown that wires and tapes prepared from feed rod loaded tubes show enhanced uniformity of electrical transport properties when compared with conventional powder packing, especially in wires drawn to long lengths. Analysis on production feed rods have shown carbon content to be as low as 110 ppm. © 1999 IEEE.
Resumo:
A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the performance of polymer solar cells. By using low-temperature chemical vapor deposition with short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO surface. The chemical vapor deposition parameters were carefully refined to balance the tube size and density, while minimizing the decrease in conductivity and light harvesting of the electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the consequent nano-structuring of the electrode surface, we observe an increase in external quantum efficiency in the wavelength range from 550 to 650 nm. Overall, polymer solar cells realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, outclassing reference cells based on standard FTO electrodes.
Resumo:
Bi-2212 tapes were fabricated using a powder-in-tube method and their superconducting properties were measured as a function of heat treatment. The tapes were heated to temperature, T1 (884-915 °C), and kept at that temperature for 20 min to induce partial (incongruent) melting. The samples were cooled to T2 with a ramp rate of 120 °C h-1 and then slowly cooled to T3 with a cooling rate, R2, and from T3 to T4 with a cooling rate, R3. The tapes were kept at the temperature T4 for P1 hours and then cooled to room temperature. Both R1 and R2 were chosen between 2 and 8 °C h-1. It was found that the structure and Jc of the tapes depend on the sintering conditions, i.e. T1-4, R1-3 and P1. The highest Jc of 5800 Å cm-2 was obtained at 77 K in a self-field with heat treatment where T1 = 894 and 899 °C, R1 = R2 = 5 °C h-1 and P1 = 6 h were employed. When 0.7% of bend strain, which is equivalent to a bend radius of 5 mm, was applied to the tape, 80% of the initial Jc was sustained.
Resumo:
Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies. COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE 2, which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA 2 in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD 2 and its metabolite 15d-PGJ2, PGF 1α and PGI 2. Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity.A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will also be discussed. Finally, we will highlight the latest pre-clinical technologies as well as avenues for future investigation in this highly topical research field. © 2011 Elsevier B.V.
Resumo:
The ability to identify and assess user engagement with transmedia productions is vital to the success of individual projects and the sustainability of this mode of media production as a whole. It is essential that industry players have access to tools and methodologies that offer the most complete and accurate picture of how audiences/users engage with their productions and which assets generate the most valuable returns of investment. Drawing upon research conducted with Hoodlum Entertainment, a Brisbane-based transmedia producer, this project involved an initial assessment of the way engagement tends to be understood, why standard web analytics tools are ill-suited to measuring it, how a customised tool could offer solutions, and why this question of measuring engagement is so vital to the future of transmedia as a sustainable industry. Working with data provided by Hoodlum Entertainment and Foxtel Marketing, the outcome of the study was a prototype for a custom data visualisation tool that allowed access, manipulation and presentation of user engagement data, both historic and predictive. The prototyped interfaces demonstrate how the visualization tool would collect and organise data specific to multiplatform projects by aggregating data across a number of platform reporting tools. Such a tool is designed to encompass not only platforms developed by the transmedia producer but also sites developed by fans. This visualisation tool accounted for multiplatform experience projects whose top level is comprised of people, platforms and content. People include characters, actors, audience, distributors and creators. Platforms include television, Facebook and other relevant social networks, literature, cinema and other media that might be included in the multiplatform experience. Content refers to discreet media texts employed within the platform, such as tweet, a You Tube video, a Facebook post, an email, a television episode, etc. Core content is produced by the creators’ multiplatform experiences to advance the narrative, while complimentary content generated by audience members offers further contributions to the experience. Equally important is the timing with which the components of the experience are introduced and how they interact with and impact upon each other. Being able to combine, filter and sort these elements in multiple ways we can better understand the value of certain components of a project. It also offers insights into the relationship between the timing of the release of components and user activity associated with them, which further highlights the efficacy (or, indeed, failure) of assets as catalysts for engagement. In collaboration with Hoodlum we have developed a number of design scenarios experimenting with the ways in which data can be visualised and manipulated to tell a more refined story about the value of user engagement with certain project components and activities. This experimentation will serve as the basis for future research.
Resumo:
This thesis is the first study to investigate the associations between sun exposure and folate degradation in a group of childbearing age women in a high UV environment. It examined whether the degree of sun exposure experienced by women influenced blood folate levels following a period of folic acid supplementation and found a strong significant relationship between increased sun exposure and folate degradation. This relationship has strong implications for public health and the thesis has provided a foundation for further research in this area.
Resumo:
The aim of this review is to identify current chemotherapy treatment for tumours of the oesophagus, stomach, pancreas, and liver. The role of both neoadjuvant, adjuvant, and palliative chemotherapy regimens will be discussed. This review will be of interest to oncologists in clarifying current issues regarding chemotherapy, and to physicians in other medical specialties, to increase their general understanding of benefits and drawbacks of chemotherapy in this patient group.
Resumo:
Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.
Resumo:
Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called "residual order spectrogram", i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.