943 resultados para Differential Scanning Calorimetry (dsc)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Local anesthetics (LA) belong to a class of pharmacological compounds that attenuate or eliminate pain by binding to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nerve impulse. S (-) bupivacaine (S(-) bvc) is a local anesthetic of amino-amide type, widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. This article focuses on the characterization of an inclusion complex of S(-) bvc in 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). Differential scanning calorimetry, scanning electron microscopy and X-Ray diffraction analysis showed structural changes in the complex. In preliminary toxicity studies, the cell viability tests revealed that the inclusion complex decreased the toxic effect (p<0.001) produced by S(-) bvc. These results suggest that the S(-) bvc:HP-ß-CD inclusion complex represents a promising agent for the treatment of regional pain. Keywords: S(-) bupivacaine; cyclodextrin; inclusion complex.
Resumo:
In this study nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by melt intercalation. The influence from the organoclays on the biodegradation of PLA was evaluated based on the respirometry method. The incorporation of clay Cloisite 20A did not change the mineralization curve of PLA. The nanocomposite with Cloisite 30B, on the other hand, presented a different behavior, indicating a delay in the polymer biodegradation. The materials were characterized by X-ray Diffraction, Thermogravimetric Analysis and Differential Scanning Calorimetry. The materials characterization indicated nanocomposites with an intercalated structure as well as reduced thermal stability and a slight increase in the degree of crystallinity compared to the pure polymer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Praziquantel (PZQ) is a pyrazinoisoquinoline anthelmintic that was discovered in 1972 by Bayer Germany. Currently, due to its efficacy, PZQ is the drug of choice against all species of Schistosoma. Although widely used, PZQ exhibits low and erratic bioavailability because of its poor water solubility. Nanostructured lipid carriers (NLC), second-generation solid lipid nanoparticles, were developed in the 1990s to improve the bioavailability of poorly water soluble drugs. The aim of this study was to investigate nanostructured lipid carriers as a strategy to improve the efficacy. of PZQ in S. mansoni treatment. We prepared NLC2 and NLC4 by adding seventy percent glycerol monostearate (GMS) as the solid lipid, 30% oleic acid (OA) as the liquid lipid and two surfactant systems containing either soybean phosphatidylcholine/poloxamer (PC/P-407) or phosphatidylcholine/Tween 60 (PC/T60), respectively. The carriers were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and Fourier transform-infrared spectroscopy. The safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. The results showed that the encapsulation of PZQ in NLC2 or NLC4 improved the safety profile of the drug. Treatment efficacy was evaluated on the S. mansoni BH strain. PZQ-NLC2 and PZQ-NLC4 demonstrated an improved efficacy in comparison with free PZQ. The results showed that the intestinal transport of free PZQ and PZQ-NLC2 was similar. However, we observed that the concentration of PZQ absorbed was smaller when PZQ was loaded in NLC4. The difference between the amounts of absorbed PZQ could indicate that the presence of T60 in the nanoparticles (NLC4) increased the rigid lipid matrix, prolonging release of the drug. Both systems showed considerable in vitro activity against S. mansoni, suggesting that these systems may be a promising platform for the administration of PZQ for treating schistosomiasis.
Resumo:
The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.
Resumo:
The glassy carbon is a material with a huge technological evolution. Due to its lightness, biocompatibility and their thermal and electrical properties this material finds applications in several industrial fields such as electronics, medical, aerospace and chemical. In order to explore the conductive properties of glassy carbon for use as modified electrodes, the present work aims the processing of monolithic and reticulated glassy carbon with colloidal copper for use in electrochemical applications. First, the best parameters for the cure of furfuryl alcohol resin doped were established through viscosimetry measurements and pressurized differential scanning calorimetry. The analysis of the micrographs of the cured resins show that copper concentrations above 3% weight, generate higher porosity in the material. The characterizations of the monolithic and reticulated glassy carbon resulting from carbonization were performed by scanning electron microscopy (SEM), Raman and Electrochemical impedance spectroscopy, and although it was not possible to detect the presence of copper by SEM, the influence of these particles have been observed by Raman and FT-IR spectra and electrochemical behavior of the material. The decrease in conductivity of monolithic and reticulated glassy carbon in the presence of copper may be related to the defects caused by the presence of copper in the structure of the material.